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This paper presents a safe delay-adaptive control for a strict-feedback nonlinear ODE with a delayed
actuator, whose dynamic is also a strict-feedback nonlinear ODE and the delay length is unknown.
By formulating the delay as a transport PDE, the plant becomes a sandwich configuration consisting
of nonlinear ODE-transport PDE-nonlinear ODE, where the transport speed in the PDE is unknown.
We propose a predictor-based nonovershooting backstepping transformation to build the nominal

Keywords: safe delay-compensated control, guaranteeing that the output of the distal ODE safely tracks the
Delay-adaptive control target trajectory from one side without undershooting. To address the uncertainty in the delay,
Backstepping we incorporate recent delay-adaptive and safe adaptive technologies to build a safe adaptive-delay

Safe control
Strict-feedback nonlinear systems
Vehicle platooning

controller. The adaptive closed-loop system ensures (1) the exact identification of the unknown delay
in finite time; (2) the output state stays in the safe region all the time, especially in the original
safe region, instead of a subset, after a finite time; (3) all states are bounded, and moreover, they
will converge to zero if the target trajectory is identically zero. In the simulation, the proposed control
design is verified in the application of safe vehicle platooning. It regulates the spacing between adjacent
vehicles to converge to a small distance and avoids collisions by ensuring they do not breach the safe

distance at any time, even in the presence of large unknown delays and at a relatively high speed.
© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and

similar technologies.

1. Introduction

Vehicle platooning (Ploeg, Van De Wouw, & Nijmeijer, 2013),
as an automatic vehicle-following control system that ensures the
vehicles in the queue follow each other with a small constant
spacing, has gained widespread attention due to its benefits in
improving traffic capacity, reducing congestion, and saving fuel.
An effective platooning strategy should ensure not only string sta-
bility but also safety, i.e., keeping the spacing between adjacent
vehicles at a preset safe distance and not breaching this safe dis-
tance all the time for the purpose of avoiding collision (Axelsson,
2016). Besides, delay compensation is an important issue in vehi-
cle platooning, considering that delays, which have an impact on
the system'’s stability, widely appear in practice, and moreover, its
length cannot always be known exactly. The results of safe control
design for vehicle platooning under unknown delays are still rare
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because of the technical challenges in combining delay-adaptive
design and CBF-based safe control.

1.1. Delay-adaptive control

Since the emergence of “Smith predictor” (Smith, 1959), vari-
ous control schemes have been developed to reduce the effects of
time delays (Artstein, 1982; Bekiaris-Liberis & Krstic, 2010), par-
ticularly in nonlinear systems with state delays (Jankovic, 2001;
Mazenc & Bliman, 2006) or input delays (Mazenc, Malisoff, &
Lin, 2008; Mazenc, Mondie, & Francisco, 2004). In Krstic (2009a),
Krstic and Smyshlyaev (2008), a backstepping-based technique
was proposed on the basis of representing the time delay as
a transport PDE. Utilizing this technique, the problem of delay
compensation in nonlinear systems has been addressed in Krstic
(2009a, 2009b). This approach has also been extended to com-
pensate for various types of delays, including time-varying de-
lays (Bekiaris-Liberis & Krstic, 2011) and state-dependent de-
lays (Bekiaris-Liberis & Krstic, 2012; Diagne, Bekiaris-Liberis, &
Krstic, 2017; Diagne, Bekiaris-Liberis, Otto, & Krstic, 2017). In ad-
dition to the ODE systems, this approach has also been applied in
PDE delay compensation, such as in Koga, Bresch-Pietri, and Krstic
(2020), Lhachemi, Prieur, and Trelat (2020), Qi, Wang, Fang, and
Diagne (2019), where the plant becomes a cascade of PDEs after
representing the delay as a transport PDE. More results about
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nonlinear delay-compensated control are included in Bekiaris-
Liberis (2024), Bekiaris-Liberis and Krstic (2013), Karafyllis and
Krstic (2017).

The aforementioned results consider a known delay. When the
exact value of the delay is unknown, a delay-adaptive approach
is required to compensate for it. A Lyapunov-based adaptive
delay controller was developed for ODE plants (Bekiaris-Liberis,
Jankovic, & Krstic, 2013; Bresch-Pietri & Krstic, 2014; Krstic &
Bresch-Pietri, 2009; Zhu, Krstic, & Su, 2016, 2020; Zhu, Su, &
Krstic, 2015). It provides better transient performance than the
traditional adaptive methods such as swapping or passive iden-
tifiers (Krstic, 2009a) and has been further developed for PDE
systems in Wang, Qi, and Diagne (2021), Wang, Qi, and Krstic
(2023). Recently, a delay-adaptive controller for coupled hyper-
bolic PDE subject to an unknown input delay has been proposed
in Wang and Diagne (2024), where a delay estimator is built
based on batch least-square identifier (BaLSI) that was introduced
in Karafyllis, Kontorinaki, and Krstic (2019), Karafyllis and Krstic
(2018) for nonlinear ODEs and extended to PDEs in Karafyllis,
Krstic, and Chrysafi (2019), Wang and Krstic (2021, 2022), Wang,
Krstic, and Karafyllis (2021). By this delay estimator, the un-
known delay can be exactly estimated in the finite time, which
contributes to better transient performance, enabling exponential
regulation of the plant states.

1.2. CBF safe control

The current delay-adaptive control designs do not consider the
safety issue. In many engineering applications, like autonomous
driving, robotics, and UAV, the safety for avoiding collision is
vital (Ames, Grizzle, & Tabuada, 2014; He & Orosz, 2018; Molnar,
Kiss, Ames, & Orosz, 2022; Nubert, Kohler, Berenz, Allgower, &
Trimpe, 2020). One way to constrain the state in a safe region is
the Barrier Lyapunov Function (BLF) method, whose major limi-
tation is that it enforces invariance of every level set, resulting in
relatively large conservatism (Ames et al., 2019). Control Barrier
Functions (CBFs) introduced in Ames et al. (2019, 2014), Ames,
Xu, Grizzle, and Tabuada (2016) have been demonstrated as an
effective approach to guarantee safety. The CBF-based safe design
constrains the focused system state in the safe region by ensuring
the nonnegativity of CBFs and then building a safety filter to
override the control law. In addition to the above one relative
degree CBFs, the high relative degree CBF design was reported
in Nguyen and Sreenath (2016), Xiao and Belta (2021), whose
root is the nonovershooting control design in Krstic and Bement
(2006) for a class of strict-feedback nonlinear systems. Utilizing
this tool (Krstic & Bement, 2006), some advanced safe control
designs were proposed for the stochastic nonlinear systems (Li
& Krstic, 2020), the PDE model (Koga & Krstic, 2023; Wang &
Krstic, 2024, 2025), or in the prescribed-time safety task (Abel,
Steeves, Krstic, & Jankovic, 2023) where safety is only enforced
within a preset finite time determined by the user. In the case
of unknown parameters, guaranteeing safety has attracted the
attention of many scholars due to its practical and theoretical
significance. The representative work is Taylor and Ames (2020),
which introduces the adaptive Control Barrier Functions (aCBFs),
on the basis of the adaptive Control Lyapunov Functions (aCLFs),
to ensure adaptive safety. However, it has the conservatism that
the plant states are constrained in a subset of the original safe set.
The study in Lopez, Slotine, and How (2020) alleviates this con-
servatism by leveraging the parameter adaption and data-driven
model estimation. Some extended safe-adaptive control results
can be found in Cohen and Belta (2022), Lopez and Slotine (2023).
Recently, an adaptive-safe control scheme was proposed in Wang
and Krstic (2025) based on the nonovershooting control design
in Krstic and Bement (2006) and the BaLSI, which reduces the
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conservatism of the current safe-adaptive schemes, constraining
the plant states in the original safe set after a finite time, and
achieves the exponential regulation of 2 x 2 hyperbolic PDE-ODE
cascade, in the presence of the uncertainties in both PDE and ODE
subsystems.

1.3. Contributions

This paper presents the safe delay-adaptive control design
for strict-feedback nonlinear ODEs subject to an unknown state
delay, ensuring that the output state safely tracks the target tra-
jectory from one side without undershooting. Main contributions
are:

(1) To our knowledge, this is the first safe delay-adaptive
control design for a nonlinear system. It incorporates the safety
goal into the existing delay-adaptive control results like Bresch-
Pietri and Krstic (2014), Wang, Diagne, and Qi (2021), Zhu and
Krstic (2020), and removes the known delay requirement in the
current safe delay-compensated control (Jankovic, 2018; Molnar,
Singletary, Orosz, & Ames, 2020; Orosz & Ames, 2019).

(2) Compared with the recent safe adaptive control design for
sandwich systems (Wang & Krstic, 2025) where the distal ODE
to be safely regulated is linear, this paper focuses on the safe
regulation of the nonlinear ODE and extends the safe stabilization
control in Wang and Krstic (2025) to safe trajectory tracking.

1.4. Organization

The problem is formulated in Section 2. We present the nom-
inal predictor-based safe control design in Section 3. Further,
the safe adaptive design for this system, where the delay length
is unknown, is proposed in Section 4. The effectiveness of the
proposed design scheme is verified in the application of vehicle
platooning with avoiding collisions in Section 5. Conclusion and
future work are presented in Section 6.

1.5. Notation

e Let U € R" be a set with non-empty interior and let 2 €
R be a set. By C°(U; £2), we denote a class of continuous
mappings on U, which takes values in £2. By CK(U; £2),
where k > 1, we denote the class of continuous functions
on U, which have continuous derivatives of order k on U
and take values in £2. )

e The notation f®(t) denote i times derivatives of f, ul’(x, t),
ui')(x, t) denote i times derivatives with respect to x and with
respect to t of u(x, t) respectively.

o Define Xi(t) = [yi(t), y2(t), ...
[s(t), s(t), ..., sOE)”

e For n-vector, the norm |-| denotes the usual Euclidean
norm. For square-integrable, measurable functions
u:[0,1] x R — R, the norm [[u(t)] == (f} u(x, £)2 dx)? <
+00.

e The symbol e; denotes that n-dimensional unit vector with i
th entry as 1 and other entries are zero, ie, e =
[0,...,0,1,0,...,0]1xn.

———

i—1

017, and sO(t) =

For ease of presentation, we omit or simplify the arguments of
functions and functionals when no confusion arises. Besides, if
a > b happens in Zf’:a of this paper, it means that the result
is zero.
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2. Problem formulation

We consider the following n+ m relative order strict-feedback
nonlinear system with an unknown state delay D, whose position
and length are arbitrary:

yi(t) = yira(O) +¥ily), i=1,....n—1 (1)
yn(t) = wn(yn)+b»<1(t —D), (2)
X(t) =x(0) + gi(x;).j=1,....m—1 (3)
Xm(t) = @m(xy,) + U(D), (4)

where YT(t) = [y1,¥2, ...
delay” subsystem and X'(t) =
of the “pre-delay” subsystem.

,¥n]l € R" is the state of the “post-
[x1,X2,...,%n] € R™ is the state

Assumption 1. The bound of the unknown parameter is known
and arbitrary, i.e., 0 < D < D < D, where positive constants D, D
are arbitrary and known.

The unknown delay D > 0 between the two subsystems
satisfies Assumption 1. The signal y;(t) is the output of the overall
plant, and the scalar U(t) is the control input to be designed. The
nonzero constant b is arbitrary. Physically, the X-system (3), (4)
driven by the control input describes a nonlinear actuator, i.e., X-
actuator, whose actuation reaches the nonlinear Y-plant subject
to an unknown delay.

Besides, we make the following assumption to ensure that the
nonlinear functions v, ¢; are sufficiently smooth, considering a
high relative degree plant is dealt with, which contributes to the
well-posedness of the closed system.

Assumption 2. The nonlinearity terms ¥;(y ,) in (1), (2) are n +
m — i times continuously differentiable and goj( x.) in (3), (4) are
m—j times continuously differentiable in all thelr arguments, and
¥i(0) = 0, ¢;(0) = 0.

Control objective: Under the unknown delay D, design a con-
troller U(t) to exponentially regulate the output state y;(t) to
track the target trajectory s(t) and ensure

yi(t)—s(t)=0, vt=0 (5)

i.e., safety defined in this paper, while ensuring that all plant
states are bounded. Moreover, when s(t) = 0, the exponential
convergence to zero of all states in the overall plant is guaranteed.

Because the plant is n + m relative order, we impose the
following assumption regarding the required smoothness of the
target trajectory s(t).

Assumption 3. The given target trajectory s(t) is n + m times
continuously differentiable.

For reducing the reading burden in the design process, we
denote the distal Y ODE (1), (2) as

Y(t) = f(Y(t), bx:(t — D)). (6)

Because there is no control actuation on the Y-subsystem be-
fore t = D, we require the following initial condition assump-
tions ensuring the boundedness and safety of Y-subsystem on
this no control period t € [0, D], which is necessary for safe
delay-compensated control in nonlinear systems.

Assumption 4. The distal system (1), (2) with the virtual input
x1(t), i.e., (6), is forward-complete.

Assumption 4 ensures the boundedness of the states before
the delayed control action kicks in, i.e., t € [0, D].
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Assumption 5. The initial output state y;(0) and initial virtual
input histories x1(6), & € [—D, 0) are such that y;(t) — s(t) > 0
for all t € [0, D).

Assumption 5 is the sufficient and necessary condition for
the situation that y;(t) is kept in the safe region during the
uncontrolled period: t € [0, D].

Besides, we require the following assumption that restricts the
actuator state beginning within the region of safe regulation.

Assumption 6. The initial value of the transport actuator state
x1(t) satisfies bx1(0) > h,(Y(D), s" " V(t + D)) + s"(t + D), where
the value h;,, will be given by (13) in Section 3.1.

Defining
u(x, t) = bx1(t — D + Dx), (7)

the delay can be modeled as a transport PDE, and (1), (2) is
rewritten as

Y(t) = F(Y(0), u(0, £)), (8)
Dug(x, t) = uy(x, t), (9)
u(1, t) = bx(t), (10)

)

for x € [0,1],t € [0, +o00). Now the overall plant is (8)-(10
with (3), (4), on the basis of which the control design and stability
analysis will be conducted.

3. Safe delay-compensated controller
3.1. Nonundershooting backstepping transformation for the Y part

Following Krstic and Bement (2006), we introduce the safe
backstepping transformation

zi(t) = yi(t) — hiqy — s (1), (11)
ho =0, hy = —kiz;(t) — 1, (12)
hi(y (t), st() = —kizi(t) — vi(y,)

8h1
S sy ]
i=1,...,n (13)

where the positive design parameters ki, ..., k, are to be deter-
mined later to ensure safety. We then arrive at the transformed
target Z-system given by

2,‘([’) = —kiZj(f)+Zi+1(t), i=1,...,n—1 (14)
2y(t) = —knza(t) — hy — s™(6) + u(0, £). (15)
The transformed states Z(t) = [z1(t), ..., z.(t)]" are indeed high-

relative-degree CBFs in Wang and Krstic (2025). Considering the
control action begins to regulate the Y-system from t = D, the
CBFs Z(t) need to be kept nonnegative for t € [D, oo] in the
control design to ensure the safety.

3.2. Predictor-based nonundershooting backstepping transformation
for the X part

According to Bekiaris-Liberis and Krstic (2013), we introduce
predictor states PT(t) = [Pi(t), ..., Pa(t)], which denote the D
time units ahead predictor of Y(t), i.e.,

P(t) = Y(t + D). (16)
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These predictor states can be generated by integrating (6) from ¢t
to t + D, as follows:

P(t)=Y(t)+ | f(P(o), bx:(0))do, (17)
t—D

with the initial condition
0
P(0) = Y(O)—i—/ f(P(o), bx1(0))do, 6 € [—D, 0]. (18)
-D

The nonlinear predictor (17) can be solved via the numerical
approximation that is illustrated in Chapter 4 of Karafyllis and
Krstic (2017).

Based on the predictor (17), (18), we define an auxiliary sys-
tem as

Dpi(x, t) = px(x, t), (19)
p(1,t) = P(t), (20)
p(x,0) = P(D(x — 1)), x € [0, 1] (21)

whose solution p(x, t) = [p1(x, t), ..., pa(x, )] is

p(x,t)=P(t — D+ Dx), x € [0,1] x t € [0, 0c0). (22)

Relying on the auxiliary system, applying the following transfor-
mation

w(x, t) =u(x, t) — h(p(x, t), " D(t + Dx)) — s"™(t + Dx)  (23)

for x € [0, 1] and the nonundershooting backstepping transfor-
mation

ri(t) = bxi(t) — 5y — AUV(1), (24)
10 =0, 71 = —cr1(t) — bey, (25)
5i(x,(t), ATV(1)) = —iri(t) — bgi(x,)
“lrae at
j—1 j—1 (k)
— (X t AY(t) ],

+ k;‘[ . (xes1(6) + 1) + 5y A )}

j=1,...,m (26)
where cq, ..., ¢y, are some positive design parameters to be de-

termined later, and where
A(t) = hy(P(t), s" V(¢ + D)) + s"(t + D), (27)

we arrive at the target system

zi(t) = —kizi(t) + zipq(t),i=1,...,n— 1 (28)
Dwe(x, t) = wy(x, t), (30)
w(1, t) = r(t), (31)
ij(t) = —qri(t) + ripa(6),j=1,...,m—1 (32)
Tin(t) = —CmTm(1), (33)
with choosing the control law as
U0 = 3 (enCy(0), A0 + A1)
= u(t, D). (34)

The above nominal control law U(t) is constructed using the plant
states X(t), the predictor states P(t), and the derivatives of the
trajectory function s(t) up to (n+ m) order at the future moment
t+D, ie., s"™(t+D). We write D as an argument of the function
U (34) because the predictor P(t) and the trajectory functions
stt+m)(t 4+ D) depend on it.
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3.3. Inverse transformations

In this subsection, we derive the inverse transformations of
the transformations in Sections 3.1, 3.2, ie., (11)-(13), (23),
(24)-(26), converting the target system back to the original
system. First, we show the predictors 87(x, t) = [81(x,¢t),...,
Sn(x, t)] of the transformed states Z(t) in (28), (29) as follows:

8(x, t) = Z(t + Dx)

X
=eP*Z(t)+D f PP VIBy(y, t)dy (35)
0
for x € [0, 1] x t € [0, 0c0), where
—kq 1 o o0 --- 0 0 0
0 -k 1 0 --- 0 0 0
A= . : ,B= ,
0 0 0 0 —kn_1 1 0
0 0 0 0 0 —kn/ 1/
(36)
which will be used in building the inverse transformations.
Proposition 1. The inverse transformations of (11)-(13) are
yi(t) = zi(t) + hi_y +sT0(E), (37)
ho =0, hy = —kizy(t) — Y1, (38)
hi(zi(), s"0(0) = —kizi(t) — Wi(z;, s)
i-1 .1 =
oh;_4 oh;_4
—kpzk +z K1),
" ;( 7, (Kt Zn) + 5 ()
i=1,...,n (39)

where the functions hi(z;, s V), ¥i(z;, sV) = ¥iy,) are continu-

ously differentiable in all their arguments and satisfy hi(0,0) = 0,
¥i(0, 0) = 0. The inverse of the transformation (23) is
u(x, £) =w(x, t) + ha(3(x, £), sVt + Dx)) +s™(t +Dx),  (40)

where 8(x, t) is given by (35). The inverse transformations of (24)-(26)
are

_1 L (=)
X(t) = L 1i(t) + Tjoa + p ATL), (41)

To=0, Ty = ——r(t) — @1, (42)

ey g E o%;
+ [ 2 (—cxre + 1) + et A(k)(f)i| ,

k=1 ark aA(k_l)
i=1,...,m (43)
where
A(t) = ha(8(1, t), s" V(¢ 4 D)) + s™(t + D), (44)

and the functions fj(gj,AUq)), ¢j(£j, AU”)) = <pj(§j) are continu-
ously differentiable in all their arguments and satisfy 7;(0,0) = 0,
¢i(0,0) =0.

Proof. The proof is shown in Appendix A. O

According to (37)-(43), we have built the invertible transfor-
mation between the (Y, u, X)-original system with the predictor
depending on Y, u and the (Z, w, R)-target system with the pre-
dictor § depending on Z, w, which is illustrated in Fig. 1. The
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Original System Target system

Transformation
(11)—(13) (23) (24)—(26)
. 2 S
—

Inverse Transformation
(37)—(39) (40) (41)—(43)

Fig. 1. The transformation between the Y, u, X-original and Z, w, R-target sys-
tems with the predictors p, 8.

invertibility built here will be used to prove the stability of the
closed-loop system.

3.4. Selection of design parameters

We need to select the design parameters under certain condi-
tions to ensure safety, as shown in this subsection. We select the

parameters ki, ..., k, to satisfy
ki >max{2, k},i=1,....n—1, ky>1, (45)

where
1

Pi(0) — hi_1(P;_,(0), s%=2)(D)) — si—1)(D)
x [ =Pia(0) = i(P,(0)) + (D)

= ah; oh;
+ Z(L(Plﬁl(o)‘i‘ Vi) + — : s“(D)) |.
~\"op, ok ]
.,n—1 (46)

k
i=1,

k,‘ =

and where P;(0) = e;P(0) is the initial condition of the predictor,
which is determined by the initial condition Y(0) and initial
virtual input histories x1(6),6 € [—D, 0) via (18). The purpose
of this design parameter selection is to ensure that the CBF states
zi(t),i=1, ..., n are positive at the initial time t = D for control
action at the distal ODE (1), (2). This will be seen clearly in the
proof of Lemma 4.

The design parameters cq, ..., ¢, are selected as:

¢ >max{2,¢hj=1,....m—1, ¢n>1, (47)
where
. 1
Ci = X
7 bx(0) — i_1(x;_4(0), AT72(0)) — AU-1(0)

x [—bxm(m—bsoj(z-( 0)) + 49(0)

Ti_

+ Z Xk+1(0 + @)+ aA(,{jl)A(k)(O))],

]:1,...m—l (48)

where A(0) given by (27) depends on the initial predicted value
P(0) that is determined by the initial condition Y(0) and initial
virtual input histories x,(0),0 € [—D, 0) via (18), as mentioned
before. This selection is to make the values of CBF states rj(t),j =
1,...,m positive at the initial time t = 0, which will be seen
clearly in the proof of Lemma 3. Additionally, it also contributes to
the exponential regulation of all plant states, which will be shown
in Lyapunov analysis (B.5).

3.5. Result with the nominal safe delay-compensated control
Theorem 1. For initial data Y(0) € R", X(0) € R™, the initial input

history x;(t) € C™([-D, 0]) satisfying Assumptions 4-6, and a
target trajectory s(t) satisfying Assumption 3, choosing the design
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parameters ki, ..., ks, c1, ..., cn satisfying (45)-(48
loop system (1)-(4) with the nominal controller (34) and (1
has the following properties

), the closed-
7), (18)

1. The output y+(t) exponentially tracks the target trajectory s(t)
in the sense that |y,(t) — s(t)| exponentially converges to zero,
and all plant states, i.e.,

w(t) = IX(0)] + [Y(£)] +  sup

t—D<t<t

Ix1(7)l (49)

is bounded, and the ultimate bound depends on the target
trajectory. If the target trajectory s(t) = 0, then W(t) is
exponentially convergent to zero.

2. The safety is enforced in the sense that y,(t) — s(t) > 0 holds
ont>0.

Before presenting the proof, we propose the following lemmas
regarding the exponential stability and non-negative CBFs in the
target system (28)—(33), which will be used in establishing the
theorem.

Lemma 1. The exponential stability of the target system (28)-(33)
is achieved in the sense that there exist positive constants Y, and
og such that

Q(t) < Yof2(0)e o0t (50)

where
m

Q200 = Yzt + Y )
i=1 i=1

Proof. The proof is shown in Appendix B. O

+ D w0l (51)

The inclusion of the higher spatial derivatives of w in (51) is to
show the exponential regulation of the overall system including
the actuator dynamics, which will be seen clearly later.

Lemma 2. For the predictor § (35) of the transformed state Z(t)
in the target system, the signals |8(x, t)|?, Vx € [0, 1] are expo-
nentially convergent to zero, and also |8§”(1, t)] ,i=0,...,mare
exponentially convergent to zero.

Proof. The proof is shown in Appendix C. O

We show that the CBFs are ensured non-negative in the fol-
lowing two lemmas.

Lemma 3. The high-relative-degree CBFs rj(t),j = 1,...,m are
nonnegative all the time under the selection of design parameters
(47), (48),ie., 1j(t) > 0,j=1,...,m, for time t > 0.

Proof. Firstly, we claim that all the initial values of rj(t) are
positive. Recalling Assumption 6 and (7), (23), (27), (31), we have
the initial condition r{(0) = w(1,0) > 0. Setting t = 0 in (24),
we have

fj+1(0)=bxj+1( )—r;( (0). AU1(0)) — A¥(0)

—bX1+1( ) — AD(0) + 1;(0) + byi(x;(0))
S 0Tk-1_ 4 52
Z 0)+ 1) + 5y AY) (52)
k=1

forj = 1,...,m — 1. For 1;(0) > O, using the design pa-

rameter selection of ¢; in (47), (48), we obtain from (52) that
1i+1(0) > 0. Based on this induction result, starting from r1(0) >
0, it can recursively infer that all the initial conditions r;(0) >
0,j = 1,...,m. The solution of (32), (33) is ry(t) = ry(0)e~cmt,
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() = (0™ + [y eV a(y)dy.j = 1,....m — 1, to-
gether with the above positive initial condition, the lemma is then
obtained. O

Lemma 4. The high-relative-degree CBFs z(t),i = 1,...,n are
nonnegative under the selection of design parameters (45), (46),
ie,z(t)>0,i=1,...,n, fortimet > D.

Proof. Setting t = D and replacing Y(D) with P(0) in (1
one gets

1), then

Zi1(D) = Pi1(0) — hy(P,(0), s (D)) — s')(D)
= Pi+1( ) — s(D) + kizi(D) + ¥i(P;(0))
8h,
- Z = (Preca(0) + ¥ie) + 5y s VUD)). (53)

Under the selection of parameters k; in (45), (46), we also obtain
the induction step: if z;(D) > 0, then z;,{(D) > 0 according to
(53). Because of the base case that zy(D) = y(D) — s(D) > 0
ensured in Assumption 5, applying the induction step obtained
above, we thus have that all zi(D) > 0,i = 1, ..., n. Considering
the structure of (28), (29), together with the initial conditions
zi(D) > 0, and w(0, t) = r1(t —D) > 0, t > D according to Lemma
3 as well as (30), (31), we obtain that z(t) > 0,i = 1,...,n on
t e[D,o0]. O

Now, we are ready to show the proof of Theorem 1:

Proof. (1) The stability results of the target system in Lemmas
1 and 2 indicate that |Z(t)I?, [R()%, Y1y w0112, 18x, 02,

Vx € [0,1], and |8El)(1,t)|2,i = 0,...,m are exponentially
convergent to zero.

Considering the tracking error |z;(t)| exponentially converges
to zero, we have that |y(t) — s(t)| exponentially converges to
zero.

Recalling Proposition 1, applying Cauchy-Schwarz inequal-
ity, it follows (37)-(39) and exponential convergence to zero of

zi(t)? that y;(t t)? are bounded and the ultimate bound depends
on ZJ 0sU( Y fori = 1,...,n. According to (40) in Proposi-
tion 1, it is then obtained that sup,co 1 [u(x, t)| is bounded and
the ultimate bound depends on the functions [ [s™(t + Dx)| dx.
Recalling (7), we thus have that

sup |x1(7)| = |b| sup |u(x,t)| (54)
t—D<t<t x€(0,1]
is also ultimately bounded by a function depending on
f Is™(t + Dx)| dx.

Considering the forward-completeness of the distal system (1),
(2) defined in Assumption 4 and the bounded initial condition of
the virtual input state x,(6), 0 € [—D, 0), it follows that

P(6) < oo. (55)

Plugging the predicted states p(1, t), §(1, t) into the inverse trans-
formation (37), we have

pi(1,t) =6;(1, t) + hi_1(8;_,(1, t), s"2(t + D))
+ sVt +D), i=1,...,n (56)

Recalling the continuous differentiability of h; in (39) and the
exponential convergence to zero of §;(x, t) proven above, we have
that e;P(t) = pi(1, t) is bounded for t > 0 and the ultimate bound
depends on si—V(t 4+ D) fori =1, ..., n. Recalling (22) and (55),
we know |p(x, t)|? are bounded and the ultimate bound depends
on s (t 4+ Dx)2.

Recalling (44), one obtains that |A(l (t)l is bounded with
the ultimate bound depending on ) ' sVt + D), because
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|8£l)(l, t)|2, i=0,..., mare exponentially convergent to zero and
the h, in (39) is continuously differentiable. Recalling Proposition
1, applying Cauchy-Schwarz inequality, it follows (41)-(43) and
exponential convergence to zero of ri(t)?, i = 1, ..., m that x;(t)?
are bounded and the ultimate bound depends on Z' L st 4

DY for i = 1,..., m. Therefore, we conclude that lI/( ) defined
by (49) is bounded, and the ultimate bound depends on the given
target trajectory s(t).

Next, we show that ¥(t) (49) is exponentially convergent to
zero if the target trajectory s(t) = 0. Considering the exponential
convergence to zero of |Z(t)| and h,(0, 0) = 0, applying Cauchy-
Schwarz inequality for (37) in Proposition 1, we know that |Y(t)]
is exponentially convergent to zero. Recalling the inverse trans-
formation of u(x, t) (40) in Proposition 1, it is obtained from
the exponential convergence to zero of |§(x, t)|, ||w(-, t)||, and
hn(0, 0) = 0 that SUDyepo.1) [U(%, t)] is exponentially convergent to
zero. It follows (54) that sup;_p-,; |X1(7)| is also exponentially
convergent to zero. It is obtained from (56) that p(1,t) = P(t)
are exponentially convergent to zero considering h;(0,0) = 0 in
(39), and the exponential convergence to zero of |§(x, t)| obtained
before. Moreover, according to (22) and (55) with Assumption 4,
the exponential convergence to zero of |p(x, t)|, Vx € [0, 1] is
obtained. Then, recalling (44), we have that |AQ(t)],i =0, .
are exponentially conver%ent to zero because of the exponentlal
convergence to zero of |(S (1, t)| obtained above and continuous
differentiability of h,. Finally, it is obtained from (41)-(43) in
Proposition 1 that |X(t)| is exponentially convergent to zero re-
calling the exponential convergence to zero of |R(t)], |A ( ), i=
0,...,m,and 7;(0,0) = 0.

The Property 1 is obtained.

(2) Over the time period t € [0, D], i.e., when no control action
reaches, the Y-system (1), (2) is only actuated by the initial input
history signal x4(t), t € [—D, 0]. Under Assumption 5, we get
y1(t)—s(t) > 0, t € [0, D], i.e., the safety is ensured on t € [0, D].
From Lemma 4, it holds that z,(t) = y(t) — s(t) > 0, t € [D, c0).
Consequently, the safety is ensured all the time. The Property 2
is thus proved.

The proof of Theorem 1 is complete. O

Based on safe infinite-dimensional backstepping transforma-
tions, a nominal safe delay-compensated controller is proposed
in this section. Next, given the uncertainty of the delay, we will
propose a safe delay-adaptive controller.

4. Safe delay-adaptive controller
4.1. Delay-adaptive control design

Following the delay-adaptive design in Wang and Diagne
(2024), we obtain the delay identifier:

D(tiz1) = argmm{lff - (tz)l : £ € Dy,
Galtist, tis1)E = Faltian, is)n = 1,2, (57)

where the set Dy := {{ € R : D < £ < D} uses the known
bounds of the unknown delay given in Assumption 1, and where
{t: > 0}2,,i = 0,1,2,... is a sequence of time instants for
identification, defined as

tiyr=t+T. (58)

The free positive design parameter T denotes the dwell time
between two adjacent triggering times. A larger T can improve
the robustness of the delay identifier against sensor measurement
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errors because it allows more measured data to join the parame-
ter identification, at the cost of increased computation time. The
time instant w1 is defined as

Mip1 = min{tg : g € {0, ..., i}, ty > tiyq — NT}, (59)

where the positive integer N > 1is a free design parameter,
which determines the size of the data set used in the delay
identification at t; 1, reflecting a trade-off between the identifier’s
robustness and computation cost.

The functions Gy, F, in (57) are given as Gp(tit1, hiv1) =
S &0 A, Foltion, wign) = [ ga(t)fa(t)de, where fy(r) =

Mit1
mn fO[ fol cos(xrn)u(x, T)dxdr, g,(t) = —fol sin(xrn)u(x, t) dx.
The detailed design process and the proof of exact delay identifi-
cation can be found in Wang and Diagne (2024). We only consider
the scenario where x1(t — D) = O on t € [0, D), i.e., there is no
signal reaching Y-subsystem before t = D according to (2), in the
adaptive control. For the case that x;(t) is not identically zero on
t € [-D, 0), a slight modification is needed in the formulation of
the delay identifier, and some expanded analysis is required in
the proof. A

Now, using the proposed estimate D(t;) to replace the un-
known delay D in the nominal controller (34), we construct a
delay-adaptive controller

Ud(t) = Ut, D(t;), t € [t;, tir1). (60)

The safety ensured by the nominal control cannot be guaranteed
here because of the delay identification error. Following the safe-
adaptive control design in Wang and Krstic (2025), we introduce
a QP safety filter (67) to override the potentially unsafe adaptive
controller (60) to enforce the safety in the adaptive control.

4.2. Safe delay-adaptive control design

First, considering the unknown D, we select the design param-
eters k;, ¢ (45), (47) as

ki > max{2, k(D)},i=1,....,n—1,k, > 1, (61)
DeDy

¢G> max{2, (D)} j=1,....,m—1,¢u > 1, (62)
DeDy

where Iv<i(D), ¢j(D) are obtained by replacing the unknown delay
D in (46), (48) by D € [D, D], where the bounds D, D are known
according to Assumption 1. Because the condition (61), (62) is a
subset of the one (45), (47), the positive initialization about r;(0)
and z;(D), as shown in the proofs of Lemmas 3, 4, still hold here.
Then recalling the target system (28)—(33) and the analysis about
the safety in the proof of Property 2 in Theorem 1, we know the
safety objective z(t) = y;(t) — s(t) > 0 is achieved as long as
rm(t) > O for all time t > 0, of which a sufficient condition is

Tm(t) = —Crp(t), (63)

where the positive parameter ¢ is free. A safe region for the
control action is then obtained from (63) as S(t) = {u € R :
bu > bu*(t, D)} where

u(t,D) = %[(cm = Orm(t) + Tm + A™(1)]. (64)

Considering the unknown D, by replacing the unknown delay
by D, a conservative safe region of the adaptive control input is
introduced as

C(t) = {u € R : bu > max bu/*(t, ’D)} . (65)

DeDy

By using a QP safety filter to constrain the input signal within this
safe region (65) before exact identification is achieved, we build
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Fig. 2. The diagram of the safe delay-adaptive control.

the following safe adaptive controller:

arg minueR“u - Ud|}2
Uy(t) = {s.t. ueC(t), tel0,¢t) (66)
Uy, t e [l’f, 00)

whose explicit solution is

{max{Ud, maxpep, U*(t, D)}, if b>0;

_J | min{Uy, minpep, e*(t, D)}, if b <O,

Uq(t) = O<t=<g (67)
Ud(t)- t > tf

The switching time t; is the triggering time when the delay D
is exactly identified, determined by

tr = min{t; : 3t € [0, t;), u(-, t) # 0}, (68)

according to the proof of exact identification of delay shown
in Section 5 of Wang and Diagne (2024). The diagram of the
proposed safe delay-adaptive control system is depicted in Fig. 2.
The practical implementation of this safe delay-adaptive control
law can refer to Remarks 3, 4 in the simulation.

4.3. Result with safe delay-adaptive control

Comparing the safe nominal controller (34) with the safe
adaptive controller (67), we define their difference as

y(t) = bUq(t) — bU(t). (69)

Then, implementing U,(t) as the input into the original system
(1)-(4), the target system becomes (28)-(32) with

Tm(t) = —Cnlm(t) + y(0). (70)

Remark 1. In the control input (34), the delay D, which exists
in the predictor state P;(t) of the distal Y-system as shown in
(17), is associated with A(t), i.e., the parts related to states of the
Y-system, while independent of the signals from the X-system.
Thus, the function y(t) given by (69) does not contain the signals
from the R-system (in the form of states of the target system),
that is, y(t) can be regarded as an external signal to (70).

Proposition 2. For every (u(- ,0),X(0), Y(0)) € €™ ([0, 1]) x
R™ x R", there exist a unique solution (u, X,Y) € C™ ([0, co) x
[0, 1])xC°([0, 00); R™)x CO([0, 00); R") to the system (1)-(4) with
control input (67).

Proof. It is obtained from (u(- , 0), X(0), Y(0)) € C™ ([0, 1]) x
R™ x R" and the transformations (11)-(13), (23), (24)-(26) that
(w(-, 0),R(0),Z(0)) € C™1([0,1]) x R™ x R". According to
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Remark 1 and [Proposition 1, Wang and Krstic (2025)], for the
target system consisting of (28)-(32) and (70), we have that
(w(-, £), R(t), Z(t)) € C™ ([0, 00) x [0, 1]) x C°([0, 00); R™) x
CY([0, 0o); R™) in the weak sense. Recalling the inverse transfor-
mations (37)-(43), this proposition is then obtained. O

The result of safe delay-adaptive control is presented as fol-
lows.

Theorem 2. For the initial condition Y(0) € R",X(0) € R™
satisfying Assumptions 4-6, the history input signal x;(t) =0ont €
[—D, 0), and a target trajectory s(t) satisfying Assumption 3, choos-
ing the design parameters ki, ..., ks, C1,...,Cn satisfying (61),
(62), the closed-loop system (1)-(4) with the safe delay-adaptive
controller (67) has the following properties

1. The delay estimation ﬁ(t) is bounded and reaches the true
value in finite time t;.

2. The output y4(t) exponentially tracks the target trajectory s(t)
in the sense that |y1(t) — s(t)| exponentially converges to zero,
and all plant states, i.e., W(t) given by (49), are bounded,
and the ultimate bound depends on the target trajectory. If
the target trajectory s(t) = 0, then W(t) is exponentially
convergent to zero.

3. The safety is ensured in the sense that y(t) —
ont>0.

s(t) > 0 hold

Proof. (1) The proof of Property 1 can be found in Sec. IV-C
of Wang and Diagne (2024).

(2) Recalling the Lyapunov function V(t) (B.1), choose the
analysis parametersasag > D, q; > 0,i=1, ..., m,i.e., replacing
the unknown D in the condition (B.6) by the known bounds
D, D. Recalling (70) in the target system of the adaptive case, the
inequity (B.4) now becomes >, aeD™! (') < Z, L biri(t
by?2(t), where b;, b depend on the upper bound D, the de51gn
parameters ¢; in (62), and the analysis parameters a;. Implement-
ing the process similar to (B.3)-(B.5) and choosing the design

parameters p (B.7) as p > max{”"e + bl,bm, 2b} +1,j =

2,...,m — 1. The time derivative of V(t) in (B.8) becomes
V(t) < —oV(t) + by*(t) + pra(t)y (1), (71)
where ¢ = 2 min{1, %} ,i = 0,...,m. For the time period

92 2D
t € [ty, ool, recalling Property 1 in Theorem 2 and (67), we
know that U,(t) = U(t), i.e, y(t) = 0. Thus, for (71), we
obtain V(t) < V(t)e e, V¢ > ¢. From Remark 1 and
transformations (11)—(13), (23)-(27), one obtains y2(t) < T 2(t)
for some positive 7", where £2(t) is defined in (51). Thus it follows
(B.2), (71) that V(t) < —oV(t) + ooV(t),t € [0, t;) for some
positive go. We then get that V(t) < V(0)eleo=2lt ¢ e [0, t).
Considering the continuity of V(t) by recalling Proposition 2, we
have that V(tf) < V(0)el?0=2!s From the above relation, it further
implies that

V(t) < V(0)eleo—eli+el g—ot -

for t S [0, 00). According to (50), we have that
Q) < 92 2752(0)e™¢, where 7, = elo—eli+olf Through the
following process in the proof of Property 1 in Theorem 1, we
obtain Property 2 in this theorem.

(3) Implementing U,(t) as the input into the original system
(1)-(4) and recalling the transformation (11)-(13), (24)-(26), we
have

fm(t) = —Cro(0) + (1), t €0, tf) (73)

where y(t) = bUy(t) — bu*(t, D) > 0 recalling (34), (63)-(67).
Since z(D), r;(0) are positive under the choice of the design pa-
rameters k;, ¢; in (61), (62), we have that r(t) > 0,t € [0, t)
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Fig. 3. Vehicle platooning with leader Eg, and the followers E;, i = 1, 2, where
the safe distances to be maintained are d,;.

from the structure of (73). Considering the continuity of r,(t) in
Proposition 2, we obtain ry,(tf) = ra(ty~) > 0. When the adaptive
input signal Ug(t) is equal to Uy(t) at the moment t = ¢, the
solution r(t) is rin(t) = r(ty)e~m(=1), Thus, the nonnegativity
of rp(t) can be ensured during t € [0, co). It implies that all
states rj(t), z(t) are all nonnegative from the same process in the
proof of Lemmas 3,4 and Property 2 in Theorem 1. The safety,
i.e,, z1(t) = y1(t) — s(t) > 0,t > 0, is then proved.
The proof of this theorem is complete. O

5. Application in safe vehicle platooning
5.1. Physical model

In this section, we validate the effectiveness of the designed
controller in the practical application of safe vehicle platooning
by simulations. Considering the scenario described in Fig. 3: an
electric vehicle E, is the leader of the vehicle string and is travel-
ing at speed vg(t). The vehicle E; is running behind the vehicle
Eo at speed v(t), and the third vehicle E; is traveling behind
the vehicle E; at speed v,(t). The control task is to achieve a
safe formation of these three vehicles while avoiding collisions,
i.e., regulating the distances between adjacent vehicles to con-
verge to the safe distances, denoted by d,1, d,2, but not to breach
the safe distances all the time, i.e., di(t) = lo(t) — [1(t) > do1,
do(t) = Li(t) — L(t) = dyp and dq(t), dy(t) converge to dyq, do2
respectively, where [;(t) is the measurable displacement of the
each vehicle E;.

In ith electric vehicle, the control input is the voltage of the
electric motor, shown in Fig. 3, whose dynamics are described by
nonlinear ODEs:

k . R 1
Fi=—"h fi=—7h—a+ v, (74)

where k; is the torque constant of the DC motor, r is the length
of moment arm, I; is the motor current, R is the resistance of
the motor, L is the inductance and V; is the input voltage. To
reduce the modeling error between the mathematical model and
the practical model, we introduce an unmodeled nonlinear term
aIf to approximate the nonlinear elements in the drive circuit
where the coefficient a is to be calibrated in practice by matching
the mathematical and practical models. The output force F; of the
motor is transmitted to the wheel, generating the wheel drive
force F,;, through a set of transmissions, like a gearbox. There
always exists a delay D;, whose length is not easy to know exactly
in advance, in such the transmission between the motor and the
wheel, i.e.,

Fyi(t) = F(t — Dy). (75)
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Table 1

Physical parameters in the vehicle platooning model.
Parameters(units) Values
Linear damping coefficient: f; (%) 5
Aerodynamic drag coefficient f, (%) 0.25
Vehicle mass: M,; (kg) 4
Target safe distance between E, and E;: d,; (m) 0.5
Target safe distance between E; and E,: dy, (m) 0.5
Transmission delay in E;: Dq (s) 2.5
Transmission delay in E;: D, (s) 15
Torque constant of the DC motor: k; (N m/A) 0.8
Length of moment arm: r (m) 0.1
Resistance of the motor: R (£2) 5
Inductance of motor drive circuit: L (H) 0.05
Calibrated coefficient of drive circuit nonlinearity: a 1

Based on the wheel drive forces F,;, according to Ames et al.
(2014), Bekiaris-Liberis (2024), the dynamic of ith vehicle is mod-
eled as the following nonlinear ODE:

Mui% = Fyi — fivi — fovi’, (76)
where M,; is the vehicle mass, and f,v;> describes the nonlinear
damping force. The physical parameters used in the simulation
are given in Table 1, where we choose delays that are greater
than those generally encountered in practice to evaluate the
controller under much challenging circumstances and showcase
its performance.

5.2. Matching the physical model and the plant (1)-(4)
For ith vehicle, setting y;1(t) = —[i(t), yi(t) = —vi(t), x;1(t) =

F; (i, xi1(t — D) = Fu), and U; = %, the physical model
(74)-(76) is rewritten as

yi(t) = y(t), (77)
o —fya(t) +Hye(t) xa(t —Di)

yia(t) = M., TP (78)
n(t) = — < "2 4u 79
xi(t) = —Xin akTX“ + Us(t), (79)

which is covered by the considered plant (with the states Yj(t) =
i (6), yia (1T, Xi(t) = x;1(t), where i denotes ith considered
plants). Considering the physical safety constraint l;_q(t) — Li(t) —
doi > 0, we set the target trajectory of the ith vehicle as s;j(t) =
—li_1(t)+d,i. We set that the initial position of the leader vehicle
Eq is Io(0) = 10, with the speed given by v(t) = 4 + sin(t) and
thus the target trajectory for E is s1(t) = —4t +cos(t)— 11+ dy;.
The target trajectory for vehicle E; is s(t) = y11(t) + dop. The
unknown delays of vehicles Eq, E; are given in Table 1, with
known bounds as D = 0.2, D = 4. Assuming the initial values
of vehicles’ speed and distance between them as v{(0) = 1,
v,(0) = 2, d1(0) = 5, d>(0) = 5, then the initial conditions of Y;(t)
are given as y11(0) = —5, y12(0) = —1, y21(0) = 0, y22(0) = —2.
Besides, we take x11(0) = 2, x21(0) = 1 with x{1(t) = 0,x1(t) =0
during the period t € [—D,0). They satisfy Assumptions 4-6
regarding the initial conditions.

5.3. Controller

According to (34), the nominal controller for this three-order
system is

C; 1
Ui(t) = —cnxin — gin + fA,(t) + BAE”(r), (80)

where Ai(t) = —kiikiaPin — (kin + ki2)(Pi2 + ¥i1(Pin)) + kinkisi(t +
Di) + (kir + kia)sit (¢ + Di) + st + Di) — ¥ V(Pin) — Yia( Py, ).
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Remark 2. The target trajectory s;(t + D;) used in (80) depends
on the predicted state of the preceding vehicle E;_4, i.e., Pi_1.
In our simulation, recalling (17), P;_1(t) is computed on the ego
vehicle E;_; by the current state Y;_{(t), the historical predictions
P;i_1(tp),tp € [t — Dj_1,t), and the virtual input x;_1(t), and
then transmitted to the following vehicle E; . Upon receiving the
prediction information from vehicle E;_4, vehicle E; can simply
calculate that s;j(t + D;) = Pi_1(t — Di_1 + D;) + d,;. We only add
a restriction D; > D, in this application when implementing the
obtained theoretical results, considering that the controller of the
vehicle E; requires the predicted value of the displacement y;; of
the vehicle E; in a time horizon of D,, while the predictor time
span in E; controller is Dy.

Considering the unknown delay, according to (67), the safe
delay-adaptive controller is derived from the nominal safe delay-
compensated controller (80) based on the control design in Sec-
tion 4. According to (45)-(48), (61), (62), the design parameters
for the nominal or adaptive controller are chosen as ki1 = ky; =
3, k12 = kp» = 2, c11 = ¢12 = 2. The initial value of the estimator
(57) is defined as Dj(tg) = 0.2. The delay-adaptive controller
Uq(t) (60) is constructed by replacing the unknown delay with
the estimate D(t;) in (80), and the safety filter is built by choosing
¢ = 2 in (64), where it is required to seek the maximum or
minimum of the signal &/*(t, D) with respect to the delay variable
D. The implementation of seeking the maximum or minimum
of u*(t, D) and that of the delay estimator are described in the
following two remarks.

Remark 3 (Seeking the maximum or minimum of U*(t, D)). We
divide the known range [D, D] by the interval of dp, i.e., each
possible delay D(i) = D +idp,i = 0, ..., Np, where the number
Np is a freely chosen positive integer (the larger Np is accompa-
nied with higher accuracy but larger computation source). The
predictor values under all possible delays D(i),i = 0,1, ..., Np
should be computed for each moment before t;. We set a Np-
row data matrix to record the predictor values under all D(i).
Taking the discretization step d, there are [?1 predictor values
in the row corresponding to the delay D(i), in the process of
computing the prediction for D(i) (where [x] is defined as the
ceiling function: taking the least integer that is greater than or
equal to x). By taking all the possible predictor values in (67) and
selecting the maximum or minimum value as a control input, it
is ensured that the current control input is in a subset of the safe
control region of the nominal safe controller. After t;, i.e. the time
when the exact delay identification is achieved, only the values
in the row corresponding to the certain delay D(i) that is closest
to the output of the delay estimator are reserved, to continue
calculating the predictor values and the control signal along this
delay. Then there is no need to calculate the predicted values of
other rows anymore after t;, and the control input stays in the
original safe control region of the nominal control.

Besides, when seeking the maximum or minimum of ¢/*(t, D)
for vehicle E,, the predicted displacements of vehicle E; under
all possible delays are required to join in this seeking process.
Once the identification time ¢; is reached, only the predictor value
P](t—f)](tf)+f)2(tf)) based on 151(tf) is used in the design of U,(t)
(67).

Remark 4 (Implementation of the delay estimator). The delay es-
timate D(t) is constructed using the finite difference method to
approximate the integration with respect to the space variable,
which may cause some errors between the identified value and
true value. The smaller space step dx and larger design parameter
T can reduce this approximation error, but they also increase
the computational burden and time. If the difference between
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Fig. 5. Results for the distance between vehicle E; and E,, i.e., dy(t) = y21(t) —
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Fig. 6. Results for the velocities of followers E;, i.e., vi = —yp, i =1, 2.

the estimates from the identifier at two adjacent updating times
is smaller than 2% of the true value, we consider that the ap-
proximation error causes this difference, and thus, we keep the
estimated value the same as it was at the previous updating time.
Additionally, we set an upper limit of n = 3 for n in (57) to save
computation time for estimation. Other design parameters in the
estimator (57)-(59) are selected as N =5, T = 3.

5.4. Simulation results

The simulation, including the implementation of the predictor
(17) and identifier (57), is performed using the finite difference
method with a time step dt = 0.001 and a space step dx =
0.02. As mentioned in Remark 3, the interval of D(i) is taken as
dp = 0.01. In addition to the nominal safe delay-compensated
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Fig. 7. Results for(t)he output force of the actuator F; = x;1(t) and the input
rLU;(t

voltage Vi(t) = Tt

controller and the safe delay-adaptive controller, as a comparison,
we also apply a safe controller without delay compensation,
i.e., replacing the predictor states in (80) with the states Y(t).
The simulation results are shown in Figs. 4-7, where the blue
line represents the results under nominal safe delay-compensated
control, the green dot-dashed line denotes the results under
safe delay-adaptive control, and the red dotted line shows the
results under safe control without delay compensation. The re-
sults regarding the output states y;i(t),i = 1, 2 of the ith plant
considered in this paper, ie. the distances d; = y;; + i
between vehicles E; and E;_1,i = 1, 2 in practice, are illustrated
in Figs. 4, 5. We can see that the vehicle distances are conver-
gent to the pre-set safe values d,i1, dy; respectively, and never
exceed the safe boundary in the entire control process under the
nominal and adaptive controllers. For the safe controller with-
out delay compensation, the distances between vehicles undergo
large oscillations, breaching the safety constraint and ultimately
diverging due to the effects of the delay and nonlinearity. Com-
pared with the nominal control, even though the results under
the safe delay-adaptive controller exhibit greater conservatism
with respect to safety in the process of delay identification, they
have similar behavior ultimately, after the effective estimate of
the unknown is obtained. Due to the uncertainty of the predicted
information of vehicle E;, which is required in the controller of
E,, the adaptive results of E; exhibit greater conservatism with
respect to safety than E; in the process of delay identification,
as shown in Figs. 4, 5. We also know from Figs. 6(a), 6(b) that
the velocities of follower vehicles Eq, E; converge to the target
speed (i.e., v(t) = 4+sint) of the leader vehicle Ey under adaptive
and nominal control, while they diverge in the case without delay
compensation. In Figs. 4-6, the results under the three controllers
are identical before the delay time t = D; because the vehicle
behaviors only depend on the initial data on t € [0, D) and there
is no control action. The responses of the actuator output F; =
xi1(t), i = 1, 2, are shown in Figs. 7(a), 7(b), where they converge
to constant values under adaptive and nominal control. The input
voltages (i.e., control signals) of the two vehicles are depicted in
Figs. 7(c), 7(d) respectively. Additionally, Fig. 8 presents the delay
estimates from the delay identifier, where the blue line shows
the estimate Dq(t) of the delay D; and the green dot-dashed
line denotes the delay estimate D,(t). Starting from the initial
delay estimate D;(tp) = D = 0.2, the successful identification

10
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Fig. 8. Estimates of the unknown delays D;, i = 1, 2 under the initial estimates
Di(ty) = 0.2.

of the unknown delay D; is achieved at the first triggering time
tr = 3. Tiny differences exist between the delay estimates and
the true values due to the errors in approximating integration as
summation in the use of the finite difference method.

6. Conclusion and future work

In this paper, we design a safe delay-adaptive controller for
a strict-feedback nonlinear system under a delayed nonlinear
actuator, where the arbitrarily long delay D between two non-
linear subsystems is unknown, based on the safe predictor-based
backstepping transformation and a QP safety filter with BaLSI.
Finally, we achieve exponential regulation of system states with a
safety guarantee. The effectiveness of our design is verified in the
application of safe vehicle platooning, ensuring vehicle string sta-
bility with a small gap and avoiding collisions at a relatively high
speed in the presence of unknown delays. Considering external
disturbances, and measurement or prediction errors, which often
occur in practice, improving the robustness of the adaptive safe
controller will be dealt with in our future work. We will also try to
apply neural operators to improve the proposed controller’s real-
time efficacy in implementation by approximating the nonlinear
ODEs as an open-loop flow map in the predictor (Bhan, Shi, &
Krstic, 2024; Krstic, 2023).

Appendix A. Proof of Proposition 1

A.1. Inverse transformation (37)-(39)

Considering y{(t) = z;(t) + s(t) given by (11) at i = 1, we
have 1(y1(t)) = vn(z(t) + s(t)) = Ya(z(¢), s(t)) which is
continuously differentiable and satisfies ¥1(0,0) = v(0) = 0
according to Assumption 2. Considering (1) in the original system
and (28) in the target system, recalling (11), for i = 1, we have

ya(t) = y1(t) — Y1 = 21(6) + (1) — P(za(t), (1))
2(t) + ha(z1(0), s(t)) + s(t), (A1)
where hy(z1(t), s(t)) = —kiz1(t) — ¥1(z1(t), s(t)). From (A.1) and

yi(t) = zi(£) + s(t), we have yp(y,(£)) = V(z,(t), sV(¢)) by
replacing y1, y, with zq, z, and s(V(t). It is obvious that hy, ¥, is
continuously differentiable and h{(0, 0) = 0, (0, 0) = 0 from
(A.1), Assumption 2, and ¥4(0,0) = 0 shown above. Similarly,
from (1), (28) ati = 2 and (A.1), one gets

11
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y3(t) =ya2(t) — Y2 = z3(t) — kazo(t) + s2(t) — ¥

ahy dh
+ L (~kizi + ) + —s(e)

024 as
=23(t) + hy(z,(t), s(1)) + s2(t),
where Flz —kzZz( ) 102 -|- 72 ( k121 +22) + 8515(1)([.)

We now prove the induction step if all the inverse transfor-
mations from zj(t) to y;(t),j=2,...,ifori < n—1 are given as

(A2)

Yi(t) = Z(t) + hja(z;_y. s972) + s00(e),

T = —kz(t) — ¥ + Y4 (adjz,l( kzi + Zia(t)) +
ERS0), Pz, 970) = Yy ©O) = 1,

for all j, 1//1, h are continuously dlfferentlable function satlsfylng
h(O 0)=0, 1//1(0 0) = 0, thus we have y;1(t) = zi11(t) + hi +
s( )(t) with continuously differentiable function hi, ¥; satisfying
h;(0, 0) = 0, ¥;(0, 0) = 0 as well. The proof of the induction step
is given as follows. Substituting the induction hypothesis (A.3) at
j = i into the original system (1) at i + 1, recalling (28) in the
target system, one obtains y; 1(t) = yi(t) — 1//i(yi) = zi1(t) +
hiz,(0), 84°1(€) + $0(6) where hi(z,(0) $1(€) = —kizi — i +

i (G (kizi + 201) + = s9(8)), and iz, (0), s (0)) =
¥i(y (1)) by replacing y(t) in ¥ with zt), s~ ])(t) using the
relations from z; to yj, j = 2, ..., 1, given by (A.3). The function
¥ is continuously differentiable because all h;,j = 1,...,i— 1
are continuously differentiable, and satisfy ¥;(0, 0) = ¥;(0) = 0
because of (A.3), hj(0,0) =0,j=1,...,i—1, and Assumption 2.
It implies that h; is continuously dlfferentlable and h;(0,0) = 0.
The proof of the induction step is complete.

Starting from the base cases y;(t) = z;(t) + s(t), (A.1), (A.2),
and applying the induction step proved above, the inverse trans-
formation (37)-(39) is verified.

(A.3)

where h;

,i—1and

A.2. Inverse transformation (40)

Recalling (2), (7), we have
Yn(t + Dx) = Ym(y (¢ + Dx)) + u(x, t).

Taking the time derivative of (37) at i = n, replacing the current

states y,, z; by the predictor states py, §;, applying ps(x, t)

wn(gn(x, t)) + u(x, t) obtained from (A.4), we then have

8n(x, t)
at

s"2() (

(A4)

Unlp, (%, 0)) +ulx, t) = + s(t + Dx)

-
+ 2.1
1

—_

afln—l@nq (x, 1),
a‘Sk(X t)

—kidi(x, t)

=
Il

dhn_1

T (A5)

+ S (x. ) + S + D).

Recalling vn(p (
88n(xt

£) = Yn(8,(x, ), s" V(¢ + Dx)), plugging
=—k (Sn(x t) + w(x, t) obtained from (29) into (A.5), one
wixt) + (—kdax. ) = 0+ Tic]
[y (ke £) + B, ) + b s + D)) ) + s(e +

Dx). Recalling the definition of h, in (39), the inverse of the
transformation (23) is obtained as (40).

gets u(x, t)

A.3. Inverse transformation (41)—(43)

According to (40), (10), (31), we have x; = jr + $ha(8(1, 1),
st (¢ + D)) + 3s™(t 4 D), i.e., (41) at j = 1 with (44). Through
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the recursive process similar to Appendix A.1, recalling (3), (4),
(32) and (33), as well as Assumption 2, the inverse of trans-
formation (24)-(26) is obtained as (41)-(43), with continuously
differentiable @;(r;(t), AT 1(1)) = ¢;(x;) satisfying (0, 0) = 0

Appendix B. The proof of Lemma 1

We construct the following Lyapunov function for the target
system (28)-(33),

1 n P m
=+ Y e Z / aeul(x, £
i=1 i=1
(B.1)
where p, ay, ..., a, are positive analysis parameters that will be
determined later. According to (51), we have

6182(t) < V(t) < 0:8(t) (B.2)

for some positive constants 6, 6,. Taking the time derivative of
V(t) in (B.1), one obtains

n—1

"
==Y kazi(t) + Y z(t)zia(t) + w(0, )za(t)
i=1 . 11‘ 1
- ch,r, tY? +er, i (t) + —w(l ¢y
i=1 i=1
G0, £ + Zm: L w1, £)?
2D < 2D

1
a; :
— / ew((x, t)* dx,

where integration by parts has been used. Recalling (31)-(33),
we conclude that there exist positive constants by, ..., by, deter-
mined by delay time D, design parameters cy, . . ., Cy, and analysis
parameters das, ..., any, such that

m m m
a;e :
> w07 = aed™ ey < ) b
i=1 i=1

i=1
Thus applying Young’s inequality and inserting (B.4) into (B.3)
yield that

i=0

>

ssnMs

(B.3)

(B.4)

n

. 1
V() < (k= ey = ;uﬂ- — Dai(t)’
=
ape
- [p(q ~ )= 55~ b1} ri(t)?
m—1
— Y Iplei = 1) = Sbilr(t)?
i=2
1 1 a 1
- [p(cm - f) - me} rm(t) (% - E)w(O, t)?
- Fw(x, t)? w0, t B.5
f wf(x, Z Sl (85)
Under the conditions of the design parameters
Ciy...,Cm, k1, ..., ky in (45)-(48), and choosing the analysis pa-
rameters do, . .., dy, P as
ap>D, a>0,i=1,...,m (B.6)
1 .
p>max{3D+ b1,bm,2bj}+l,]=2,...,m—1 (B.7)
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we get

n m
V(t) <=zt = ) ey

i=1 i=1

m a: 1

-y i / wd(x, t)? dx < —oV(t), (B.8)

—0 0
where o = %min{ .55} > 0,i = 0,...,m. Recalling (B.2),
we thus have (50), where T, = Z—f and o = . The lemma is
obtained.

Appendix C. The proof of Lemma 2

Applying Cauchy-Schwarz inequality for (35), it is obtained
that |8(x, t)|2, ¥x € [0, 1], are exponentially convergent to zero
from the exponential convergence to zero of |Z(t)%, |w(-, t)||?
in Lemma 1. Moreover, taking i order time derivatives of (35) at
x = 1, one obtains

1
571, 6) = e™Z9(t) + D / VB (y, r)dy
0
i—1 )
=" (AiZ(t)+ Y AT TBu(0. 1)) +
j=0

pi-1)

X [i(DA)f(BwQ”*f)(L t) — e”Bw{~1(0, 1))
j=0

1
+/(DA)ieDA(1—y)Bw(y’ t)dy]’ (Cl)
0

where integration by parts and (30) have been used. According

0 (30)-(33), applying Cauchy-Schwarz inequality, we also have
w102 + w0, 07 = 1y (el O + (7)), i
1,...,m — 1 for some positive T;,. Then applying (C. 1) and re-
callmg the exponentlal convergence to zero of Z, o ||wx -, Ol
1Z(t)]%, [R(t)?> in Lemma 1, and that of |8(x,t)|*,Vx < [0, 1]
obtained above, we have that |8£i)(1, t)|2,i = 0,...,m are ex-
ponentially convergent to zero. The lemma is then obtained.
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