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 a b s t r a c t

This paper presents a safe delay-adaptive control for a strict-feedback nonlinear ODE with a delayed 
actuator, whose dynamic is also a strict-feedback nonlinear ODE and the delay length is unknown. 
By formulating the delay as a transport PDE, the plant becomes a sandwich configuration consisting 
of nonlinear ODE-transport PDE-nonlinear ODE, where the transport speed in the PDE is unknown. 
We propose a predictor-based nonovershooting backstepping transformation to build the nominal 
safe delay-compensated control, guaranteeing that the output of the distal ODE safely tracks the 
target trajectory from one side without undershooting. To address the uncertainty in the delay, 
we incorporate recent delay-adaptive and safe adaptive technologies to build a safe adaptive-delay 
controller. The adaptive closed-loop system ensures (1) the exact identification of the unknown delay 
in finite time; (2) the output state stays in the safe region all the time, especially in the original 
safe region, instead of a subset, after a finite time; (3) all states are bounded, and moreover, they 
will converge to zero if the target trajectory is identically zero. In the simulation, the proposed control 
design is verified in the application of safe vehicle platooning. It regulates the spacing between adjacent 
vehicles to converge to a small distance and avoids collisions by ensuring they do not breach the safe 
distance at any time, even in the presence of large unknown delays and at a relatively high speed.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
1. Introduction

Vehicle platooning (Ploeg, Van De Wouw, & Nijmeijer, 2013), 
as an automatic vehicle-following control system that ensures the 
vehicles in the queue follow each other with a small constant 
spacing, has gained widespread attention due to its benefits in 
improving traffic capacity, reducing congestion, and saving fuel. 
An effective platooning strategy should ensure not only string sta-
bility but also safety, i.e., keeping the spacing between adjacent 
vehicles at a preset safe distance and not breaching this safe dis-
tance all the time for the purpose of avoiding collision (Axelsson, 
2016). Besides, delay compensation is an important issue in vehi-
cle platooning, considering that delays, which have an impact on 
the system’s stability, widely appear in practice, and moreover, its 
length cannot always be known exactly. The results of safe control 
design for vehicle platooning under unknown delays are still rare 
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because of the technical challenges in combining delay-adaptive 
design and CBF-based safe control.

1.1. Delay-adaptive control

Since the emergence of ‘‘Smith predictor’’ (Smith, 1959), vari-
ous control schemes have been developed to reduce the effects of 
time delays (Artstein, 1982; Bekiaris-Liberis & Krstic, 2010), par-
ticularly in nonlinear systems with state delays (Jankovic, 2001; 
Mazenc & Bliman, 2006) or input delays (Mazenc, Malisoff, & 
Lin, 2008; Mazenc, Mondie, & Francisco, 2004). In Krstic (2009a), 
Krstic and Smyshlyaev (2008), a backstepping-based technique 
was proposed on the basis of representing the time delay as 
a transport PDE. Utilizing this technique, the problem of delay 
compensation in nonlinear systems has been addressed in Krstic 
(2009a, 2009b). This approach has also been extended to com-
pensate for various types of delays, including time-varying de-
lays (Bekiaris-Liberis & Krstic, 2011) and state-dependent de-
lays (Bekiaris-Liberis & Krstic, 2012; Diagne, Bekiaris-Liberis, & 
Krstic, 2017; Diagne, Bekiaris-Liberis, Otto, & Krstic, 2017). In ad-
dition to the ODE systems, this approach has also been applied in 
PDE delay compensation, such as in Koga, Bresch-Pietri, and Krstic 
(2020), Lhachemi, Prieur, and Trelat (2020), Qi, Wang, Fang, and 
Diagne (2019), where the plant becomes a cascade of PDEs after 
representing the delay as a transport PDE. More results about 
data mining, AI training, and similar technologies.
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nonlinear delay-compensated control are included in Bekiaris-
Liberis (2024), Bekiaris-Liberis and Krstic (2013), Karafyllis and 
Krstic (2017).

The aforementioned results consider a known delay. When the 
exact value of the delay is unknown, a delay-adaptive approach 
is required to compensate for it. A Lyapunov-based adaptive 
delay controller was developed for ODE plants (Bekiaris-Liberis, 
Jankovic, & Krstic, 2013; Bresch-Pietri & Krstic, 2014; Krstic & 
Bresch-Pietri, 2009; Zhu, Krstic, & Su, 2016, 2020; Zhu, Su, & 
Krstic, 2015). It provides better transient performance than the 
traditional adaptive methods such as swapping or passive iden-
tifiers (Krstic, 2009a) and has been further developed for PDE 
systems in Wang, Qi, and Diagne (2021), Wang, Qi, and Krstic 
(2023). Recently, a delay-adaptive controller for coupled hyper-
bolic PDE subject to an unknown input delay has been proposed 
in Wang and Diagne (2024), where a delay estimator is built 
based on batch least-square identifier (BaLSI) that was introduced 
in Karafyllis, Kontorinaki, and Krstic (2019), Karafyllis and Krstic 
(2018) for nonlinear ODEs and extended to PDEs in Karafyllis, 
Krstic, and Chrysafi (2019), Wang and Krstic (2021, 2022), Wang, 
Krstic, and Karafyllis (2021). By this delay estimator, the un-
known delay can be exactly estimated in the finite time, which 
contributes to better transient performance, enabling exponential 
regulation of the plant states.

1.2. CBF safe control

The current delay-adaptive control designs do not consider the 
safety issue. In many engineering applications, like autonomous 
driving, robotics, and UAV, the safety for avoiding collision is 
vital (Ames, Grizzle, & Tabuada, 2014; He & Orosz, 2018; Molnar, 
Kiss, Ames, & Orosz, 2022; Nubert, Kohler, Berenz, Allgower, & 
Trimpe, 2020). One way to constrain the state in a safe region is 
the Barrier Lyapunov Function (BLF) method, whose major limi-
tation is that it enforces invariance of every level set, resulting in 
relatively large conservatism (Ames et al., 2019). Control Barrier 
Functions (CBFs) introduced in Ames et al. (2019, 2014), Ames, 
Xu, Grizzle, and Tabuada (2016) have been demonstrated as an 
effective approach to guarantee safety. The CBF-based safe design 
constrains the focused system state in the safe region by ensuring 
the nonnegativity of CBFs and then building a safety filter to 
override the control law. In addition to the above one relative 
degree CBFs, the high relative degree CBF design was reported 
in Nguyen and Sreenath (2016), Xiao and Belta (2021), whose 
root is the nonovershooting control design in Krstic and Bement 
(2006) for a class of strict-feedback nonlinear systems. Utilizing 
this tool (Krstic & Bement, 2006), some advanced safe control 
designs were proposed for the stochastic nonlinear systems (Li 
& Krstic, 2020), the PDE model (Koga & Krstic, 2023; Wang & 
Krstic, 2024, 2025), or in the prescribed-time safety task (Abel, 
Steeves, Krstic, & Jankovic, 2023) where safety is only enforced 
within a preset finite time determined by the user. In the case 
of unknown parameters, guaranteeing safety has attracted the 
attention of many scholars due to its practical and theoretical 
significance. The representative work is Taylor and Ames (2020), 
which introduces the adaptive Control Barrier Functions (aCBFs), 
on the basis of the adaptive Control Lyapunov Functions (aCLFs), 
to ensure adaptive safety. However, it has the conservatism that 
the plant states are constrained in a subset of the original safe set. 
The study in Lopez, Slotine, and How (2020) alleviates this con-
servatism by leveraging the parameter adaption and data-driven 
model estimation. Some extended safe-adaptive control results 
can be found in Cohen and Belta (2022), Lopez and Slotine (2023). 
Recently, an adaptive-safe control scheme was proposed in Wang 
and Krstic (2025) based on the nonovershooting control design 
in Krstic and Bement (2006) and the BaLSI, which reduces the 
2

conservatism of the current safe-adaptive schemes, constraining 
the plant states in the original safe set after a finite time, and 
achieves the exponential regulation of 2 × 2 hyperbolic PDE-ODE 
cascade, in the presence of the uncertainties in both PDE and ODE 
subsystems.

1.3. Contributions

This paper presents the safe delay-adaptive control design 
for strict-feedback nonlinear ODEs subject to an unknown state 
delay, ensuring that the output state safely tracks the target tra-
jectory from one side without undershooting. Main contributions 
are:

(1) To our knowledge, this is the first safe delay-adaptive 
control design for a nonlinear system. It incorporates the safety 
goal into the existing delay-adaptive control results like Bresch-
Pietri and Krstic (2014), Wang, Diagne, and Qi (2021), Zhu and 
Krstic (2020), and removes the known delay requirement in the 
current safe delay-compensated control (Jankovic, 2018; Molnar, 
Singletary, Orosz, & Ames, 2020; Orosz & Ames, 2019).

(2) Compared with the recent safe adaptive control design for 
sandwich systems (Wang & Krstic, 2025) where the distal ODE 
to be safely regulated is linear, this paper focuses on the safe 
regulation of the nonlinear ODE and extends the safe stabilization 
control in Wang and Krstic (2025) to safe trajectory tracking.

1.4. Organization

The problem is formulated in Section 2. We present the nom-
inal predictor-based safe control design in Section 3. Further, 
the safe adaptive design for this system, where the delay length 
is unknown, is proposed in Section 4. The effectiveness of the 
proposed design scheme is verified in the application of vehicle 
platooning with avoiding collisions in Section 5. Conclusion and 
future work are presented in Section 6.

1.5. Notation

• Let U ∈ Rn be a set with non-empty interior and let Ω ∈

R be a set. By C0(U;Ω), we denote a class of continuous 
mappings on U , which takes values in Ω . By Ck(U;Ω), 
where k ≥ 1, we denote the class of continuous functions 
on U , which have continuous derivatives of order k on U
and take values in Ω .

• The notation f (i)(t) denote i times derivatives of f , u(i)
t (x, t), 

u(i)
x (x, t) denote i times derivatives with respect to x and with 

respect to t of u(x, t) respectively.
• Define y

i
(t) := [y1(t), y2(t), . . . , yi(t)]T , and s(i)(t) :=

[s(t), s(1)(t), . . . , s(i)(t)]T
• For n-vector, the norm | · | denotes the usual Euclidean 

norm. For square-integrable, measurable functions
u : [0, 1] × R → R, the norm ∥u(t)∥ := (

∫ 1
0 u(x, t)2 dx)

1
2 <

+∞.
• The symbol ei denotes that n-dimensional unit vector with i

th entry as 1 and other entries are zero, i.e., ei :=

[0, . . . , 0  
i−1

, 1, 0, . . . , 0]1×n.

For ease of presentation, we omit or simplify the arguments of 
functions and functionals when no confusion arises. Besides, if 
a > b happens in 

∑b
i=a of this paper, it means that the result 

is zero.
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2. Problem formulation

We consider the following n+m relative order strict-feedback 
nonlinear system with an unknown state delay D, whose position 
and length are arbitrary:
ẏi(t) = yi+1(t) + ψi(yi), i = 1, . . . , n − 1 (1)

ẏn(t) = ψn(yn) + bx1(t − D), (2)

ẋj(t) = xj+1(t) + ϕj(xj), j = 1, . . . ,m − 1 (3)

ẋm(t) = ϕm(xm) + U(t), (4)

where Y T (t) = [y1, y2, . . . , yn] ∈ Rn is the state of the ‘‘post-
delay’’ subsystem and XT (t) = [x1, x2, . . . , xm] ∈ Rm is the state 
of the ‘‘pre-delay’’ subsystem. 

Assumption 1.  The bound of the unknown parameter is known 
and arbitrary, i.e., 0 < D ≤ D ≤ D, where positive constants D, D
are arbitrary and known. 

The unknown delay D > 0 between the two subsystems 
satisfies Assumption  1. The signal y1(t) is the output of the overall 
plant, and the scalar U(t) is the control input to be designed. The 
nonzero constant b is arbitrary. Physically, the X-system (3), (4) 
driven by the control input describes a nonlinear actuator, i.e., X-
actuator, whose actuation reaches the nonlinear Y -plant subject 
to an unknown delay.

Besides, we make the following assumption to ensure that the 
nonlinear functions ψi, ϕj are sufficiently smooth, considering a 
high relative degree plant is dealt with, which contributes to the 
well-posedness of the closed system. 

Assumption 2.  The nonlinearity terms ψi(yi) in (1), (2) are n +

m − i times continuously differentiable and ϕj(xj) in (3), (4) are 
m− j times continuously differentiable in all their arguments, and 
ψi(0) = 0, ϕj(0) = 0. 

Control objective: Under the unknown delay D, design a con-
troller U(t) to exponentially regulate the output state y1(t) to 
track the target trajectory s(t) and ensure 
y1(t) − s(t) ≥ 0, ∀t ≥ 0 (5)

i.e., safety defined in this paper, while ensuring that all plant 
states are bounded. Moreover, when s(t) ≡ 0, the exponential 
convergence to zero of all states in the overall plant is guaranteed.

Because the plant is n + m relative order, we impose the 
following assumption regarding the required smoothness of the 
target trajectory s(t). 

Assumption 3.  The given target trajectory s(t) is n + m times 
continuously differentiable.

For reducing the reading burden in the design process, we 
denote the distal Y  ODE (1), (2) as 
Ẏ (t) = f (Y (t), bx1(t − D)). (6)

Because there is no control actuation on the Y -subsystem be-
fore t = D, we require the following initial condition assump-
tions ensuring the boundedness and safety of Y -subsystem on 
this no control period t ∈ [0,D], which is necessary for safe 
delay-compensated control in nonlinear systems.

Assumption 4.  The distal system (1), (2) with the virtual input 
x1(t), i.e., (6), is forward-complete.

Assumption  4 ensures the boundedness of the states before 
the delayed control action kicks in, i.e., t ∈ [0,D].
3

Assumption 5.  The initial output state y1(0) and initial virtual 
input histories x1(θ ), θ ∈ [−D, 0) are such that y1(t) − s(t) ≥ 0
for all t ∈ [0,D].

Assumption  5 is the sufficient and necessary condition for 
the situation that y1(t) is kept in the safe region during the 
uncontrolled period: t ∈ [0,D].

Besides, we require the following assumption that restricts the 
actuator state beginning within the region of safe regulation. 

Assumption 6.  The initial value of the transport actuator state 
x1(t) satisfies bx1(0) > hn(Y (D), s(n−1)(t + D)) + s(n)(t + D), where 
the value hn will be given by (13) in Section 3.1.

Defining 

u(x, t) = bx1(t − D + Dx), (7)

the delay can be modeled as a transport PDE, and (1), (2) is 
rewritten as

Ẏ (t) = f (Y (t), u(0, t)), (8)

Dut (x, t) = ux(x, t), (9)

u(1, t) = bx1(t), (10)

for x ∈ [0, 1], t ∈ [0,+∞). Now the overall plant is (8)–(10) 
with (3), (4), on the basis of which the control design and stability 
analysis will be conducted.

3. Safe delay-compensated controller

3.1. Nonundershooting backstepping transformation for the Y  part

Following Krstic and Bement (2006), we introduce the safe 
backstepping transformation

zi(t) = yi(t) − hi−1 − s(i−1)(t), (11)

h0 = 0, h1 = −k1z1(t) − ψ1, (12)

hi(yi(t), s
(i−1)(t)) = −kizi(t) − ψi(yi)

+

i−1∑
k=1

[
∂hi−1

∂yk

(
yk+1(t) + ψk

)
+
∂hi−1

∂s(k−1) s
(k)(t)

]
,

i = 1, . . . , n (13)

where the positive design parameters k1, . . . , kn are to be deter-
mined later to ensure safety. We then arrive at the transformed 
target Z-system given by

żi(t) = −kizi(t) + zi+1(t), i = 1, . . . , n − 1 (14)

żn(t) = −knzn(t) − hn − s(n)(t) + u(0, t). (15)

The transformed states Z(t) = [z1(t), . . . , zn(t)]T  are indeed high-
relative-degree CBFs in Wang and Krstic (2025). Considering the 
control action begins to regulate the Y -system from t = D, the 
CBFs Z(t) need to be kept nonnegative for t ∈ [D,∞] in the 
control design to ensure the safety.

3.2. Predictor-based nonundershooting backstepping transformation 
for the X part

According to Bekiaris-Liberis and Krstic (2013), we introduce 
predictor states PT (t) = [P1(t), . . . , Pn(t)], which denote the D
time units ahead predictor of Y (t), i.e., 

P(t) = Y (t + D). (16)
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) 
These predictor states can be generated by integrating (6) from t
to t + D, as follows: 

P(t) = Y (t) +

∫ t

t−D
f (P(σ ), bx1(σ )) dσ , (17)

with the initial condition 

P(θ ) = Y (0) +

∫ θ

−D
f (P(σ ), bx1(σ )) dσ , θ ∈ [−D, 0]. (18)

The nonlinear predictor (17) can be solved via the numerical 
approximation that is illustrated in Chapter 4 of Karafyllis and 
Krstic (2017).

Based on the predictor (17), (18), we define an auxiliary sys-
tem as

Dpt (x, t) = px(x, t), (19)

p(1, t) = P(t), (20)

p(x, 0) = P(D(x − 1)), x ∈ [0, 1] (21)

whose solution pT (x, t) = [p1(x, t), . . . , pn(x, t)] is 

p(x, t) = P(t − D + Dx), x ∈ [0, 1] × t ∈ [0,∞). (22)

Relying on the auxiliary system, applying the following transfor-
mation

w(x, t) =u(x, t) − hn(p(x, t), s(n−1)(t + Dx)) − s(n)(t + Dx) (23)

for x ∈ [0, 1] and the nonundershooting backstepping transfor-
mation

rj(t) = bxj(t) − τj−1 −∆(j−1)(t), (24)

τ0 = 0, τ1 = −c1r1(t) − bϕ1, (25)

τj(xj(t),∆
(j−1)(t)) = −cjrj(t) − bϕj(xj)

+

j−1∑
k=1

[
∂τj−1

∂xk

(
xk+1(t) + ϕk

)
+

∂τj−1

∂∆(k−1)∆
(k)(t)

]
,

j = 1, . . . ,m (26)

where c1, . . . , cm are some positive design parameters to be de-
termined later, and where 

∆(t) = hn(P(t), s(n−1)(t + D)) + s(n)(t + D), (27)

we arrive at the target system

żi(t) = −kizi(t) + zi+1(t), i = 1, . . . , n − 1 (28)

żn(t) = −knzn(t) + w(0, t), (29)

Dwt (x, t) = wx(x, t), (30)

w(1, t) = r1(t), (31)

ṙj(t) = −cjrj(t) + rj+1(t), j = 1, . . . ,m − 1 (32)

ṙm(t) = −cmrm(t), (33)

with choosing the control law as

U(t) =
1
b

(
τm(xm(t),∆

(m−1)(t)) +∆(m)(t)
)

:= U(t,D). (34)

The above nominal control law U(t) is constructed using the plant 
states X(t), the predictor states P(t), and the derivatives of the 
trajectory function s(t) up to (n+m) order at the future moment 
t+D, i.e., s(n+m)(t+D). We write D as an argument of the function 
U (34) because the predictor P(t) and the trajectory functions 
s(n+m)(t + D) depend on it.
4

3.3. Inverse transformations

In this subsection, we derive the inverse transformations of 
the transformations in Sections 3.1, 3.2, i.e., (11)–(13), (23), 
(24)–(26), converting the target system back to the original 
system. First, we show the predictors δT (x, t) = [δ1(x, t), . . . ,
δn(x, t)] of the transformed states Z(t) in (28), (29) as follows:

δ(x, t) = Z(t + Dx)

= eDAxZ(t) + D
∫ x

0
eDA(x−y)Bw(y, t) dy (35)

for x ∈ [0, 1] × t ∈ [0,∞), where 

A =

⎛⎜⎜⎜⎜⎝
−k1 1 0 0 · · · 0 0
0 −k2 1 0 · · · 0 0

. . .
...

...

0 0 0 0 · · · −kn−1 1
0 0 0 0 · · · 0 −kn

⎞⎟⎟⎟⎟⎠
n×n

, B =

⎛⎜⎜⎜⎜⎝
0
0
...

0
1

⎞⎟⎟⎟⎟⎠
n×1

,

(36)

which will be used in building the inverse transformations. 

Proposition 1. The inverse transformations of (11)–(13) are
yi(t) = zi(t) + h̄i−1 + s(i−1)(t), (37)

h̄0 = 0, h1 = −k1z1(t) − ψ̄1, (38)

h̄i(z i(t), s
(i−1)(t)) = −kizi(t) − ψ̄i(z i, s

(i−1))

+

i−1∑
k=1

(∂ h̄i−1

∂zk

(
−kkzk + zk+1

)
+
∂ h̄i−1

∂s(k−1) s
(k)(t)

)
,

i = 1, . . . , n (39)

where the functions h̄i(z i, s
(i−1)), ψ̄i(z i, s

(i−1)) = ψi(yi) are continu-
ously differentiable in all their arguments and satisfy h̄i(0, 0) = 0, 
ψ̄i(0, 0) = 0. The inverse of the transformation (23) is

u(x, t) =w(x, t) + h̄n(δ(x, t), s(n−1)(t + Dx)) + s(n)(t + Dx), (40)

where δ(x, t) is given by (35). The inverse transformations of (24)–(26
are

xj(t) =
1
b
rj(t) + τ̄j−1 +

1
b
∆̄(j−1)(t), (41)

τ̄0 = 0, τ̄1 = −
c1
b
r1(t) − ϕ̄1, (42)

τ̄j(r j(t), ∆̄
(j−1)(t)) = −

cj
b
rj(t) − ϕ̄j(r j, ∆̄

(j−1))

+

j−1∑
k=1

[
∂τ̄j−1

∂rk

(
−ckrk + rk+1

)
+

∂τ̄j−1

∂∆̄(k−1)
∆̄(k)(t)

]
,

j = 1, . . . ,m (43)

where 
∆̄(t) = h̄n(δ(1, t), s(n−1)(t + D)) + s(n)(t + D), (44)

and the functions τ̄j(r j, ∆̄
(j−1)), ϕ̄j(r j, ∆̄

(j−1)) = ϕj(xj) are continu-
ously differentiable in all their arguments and satisfy τ̄j(0, 0) = 0, 
ϕ̄j(0, 0) = 0.

Proof. The proof is shown in Appendix  A. □

According to (37)–(43), we have built the invertible transfor-
mation between the (Y , u, X)-original system with the predictor 
depending on Y , u and the (Z, w, R)-target system with the pre-
dictor δ depending on Z, w, which is illustrated in Fig.  1. The 
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Fig. 1. The transformation between the Y , u, X-original and Z, w, R-target sys-
tems with the predictors p, δ.

invertibility built here will be used to prove the stability of the 
closed-loop system.

3.4. Selection of design parameters

We need to select the design parameters under certain condi-
tions to ensure safety, as shown in this subsection. We select the 
parameters k1, . . . , kn to satisfy 
ki > max{2, ǩi}, i = 1, . . . , n − 1, kn > 1, (45)

where

ǩi =
1

Pi(0) − hi−1(P i−1(0), s(i−2)(D)) − s(i−1)(D)

×

[
−Pi+1(0) − ψi(P i(0)) + s(i)(D)

+

i−1∑
k=1

(∂hi−1

∂Pk

(
Pk+1(0) + ψk

)
+
∂hi−1

∂s(k−1) s
(k)(D)

)]
,

i = 1, . . . , n − 1 (46)

and where Pi(0) = eiP(0) is the initial condition of the predictor, 
which is determined by the initial condition Y (0) and initial 
virtual input histories x1(θ ), θ ∈ [−D, 0) via (18). The purpose 
of this design parameter selection is to ensure that the CBF states 
zi(t), i = 1, . . . , n are positive at the initial time t = D for control 
action at the distal ODE (1), (2). This will be seen clearly in the 
proof of Lemma  4.

The design parameters c1, . . . , cm are selected as: 
cj > max{2, čj}, j = 1, . . . ,m − 1, cm > 1, (47)

where

čj =
1

bxj(0) − τj−1(xj−1(0),∆
(j−2)(0)) −∆(j−1)(0)

×

[
−bxj+1(0) − bϕj(xj(0)) +∆(j)(0)

+

j−1∑
k=1

(∂τj−1

∂xk
(xk+1(0) + ϕk) +

∂τj−1

∂∆(k−1)∆
(k)(0)

)]
,

j = 1, . . . m − 1 (48)

where ∆(0) given by (27) depends on the initial predicted value 
P(0) that is determined by the initial condition Y (0) and initial 
virtual input histories x1(θ ), θ ∈ [−D, 0) via (18), as mentioned 
before. This selection is to make the values of CBF states rj(t), j =

1, . . . ,m positive at the initial time t = 0, which will be seen 
clearly in the proof of Lemma  3. Additionally, it also contributes to 
the exponential regulation of all plant states, which will be shown 
in Lyapunov analysis (B.5).

3.5. Result with the nominal safe delay-compensated control

Theorem 1. For initial data Y (0) ∈ Rn, X(0) ∈ Rm, the initial input 
history x1(t) ∈ Cm−1([−D, 0]) satisfying Assumptions  4–6, and a 
target trajectory s(t) satisfying Assumption  3, choosing the design 
5

parameters k1, . . . , kn, c1, . . . , cm satisfying (45)–(48), the closed-
loop system (1)–(4) with the nominal controller (34) and (17), (18) 
has the following properties

1. The output y1(t) exponentially tracks the target trajectory s(t)
in the sense that |y1(t) − s(t)| exponentially converges to zero, 
and all plant states, i.e., 
Ψ (t) = |X(t)| + |Y (t)| + sup

t−D≤τ≤t
|x1(τ )| (49)

is bounded, and the ultimate bound depends on the target 
trajectory. If the target trajectory s(t) ≡ 0, then Ψ (t) is 
exponentially convergent to zero.

2. The safety is enforced in the sense that y1(t)− s(t) ≥ 0 holds 
on t ≥ 0.

Before presenting the proof, we propose the following lemmas 
regarding the exponential stability and non-negative CBFs in the 
target system (28)–(33), which will be used in establishing the 
theorem. 

Lemma 1. The exponential stability of the target system (28)–(33) 
is achieved in the sense that there exist positive constants ΥΩ  and 
σΩ  such that 
Ω(t) ≤ ΥΩΩ(0)e−σΩ t (50)

where 

Ω(t) =

n∑
i=1

zi(t)2 +

m∑
i=1

ri(t)2 +

m∑
i=0

∥w(i)
x (·, t)∥2. (51)

Proof. The proof is shown in Appendix  B. □

The inclusion of the higher spatial derivatives of w in (51) is to 
show the exponential regulation of the overall system including 
the actuator dynamics, which will be seen clearly later. 

Lemma 2. For the predictor δ (35) of the transformed state Z(t)
in the target system, the signals |δ(x, t)|2, ∀x ∈ [0, 1] are expo-
nentially convergent to zero, and also |δ(i)t (1, t)|

2
, i = 0, . . . ,m are 

exponentially convergent to zero.

Proof. The proof is shown in Appendix  C. □

We show that the CBFs are ensured non-negative in the fol-
lowing two lemmas. 

Lemma 3. The high-relative-degree CBFs rj(t), j = 1, . . . ,m are 
nonnegative all the time under the selection of design parameters 
(47), (48), i.e., rj(t) ≥ 0, j = 1, . . . ,m, for time t ≥ 0.

Proof. Firstly, we claim that all the initial values of rj(t) are 
positive. Recalling Assumption  6 and (7), (23), (27), (31), we have 
the initial condition r1(0) = w(1, 0) > 0. Setting t = 0 in (24), 
we have
rj+1(0) = bxj+1(0) − τj(xj(0),∆

(j−1)(0)) −∆(j)(0)

= bxj+1(0) −∆(j)(0) + cjrj(0) + bϕj(xj(0))

−

j−1∑
k=1

(∂τj−1

∂xk
(xk+1(0) + ϕk) +

∂τk−1

∂∆(k−1)∆
(k)) (52)

for j = 1, . . . ,m − 1. For rj(0) > 0, using the design pa-
rameter selection of cj in (47), (48), we obtain from (52) that 
rj+1(0) > 0. Based on this induction result, starting from r1(0) >
0, it can recursively infer that all the initial conditions rj(0) >
0, j = 1, . . . ,m. The solution of (32), (33) is r (t) = r (0)e−cmt , 
m m
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rj(t) = rj(0)e−cjt +
∫ t
0 e−cj(t−y)rj+1(y) dy, j = 1, . . . ,m − 1, to-

gether with the above positive initial condition, the lemma is then 
obtained. □

Lemma 4. The high-relative-degree CBFs zi(t), i = 1, . . . , n are 
nonnegative under the selection of design parameters (45), (46), 
i.e., zi(t) ≥ 0, i = 1, . . . , n, for time t ≥ D.

Proof. Setting t = D and replacing Y (D) with P(0) in (11), then 
one gets
zi+1(D) = Pi+1(0) − hi(P i(0), s

(i−1)(D)) − s(i)(D)

= Pi+1(0) − s(i)(D) + kizi(D) + ψi(P i(0))

−

i−1∑
k=1

(∂hi−1

∂Pk

(
Pk+1(0) + ψk

)
+
∂hi−1

∂s(k−1) s
(k)(D)

)
. (53)

Under the selection of parameters ki in (45), (46), we also obtain 
the induction step: if zi(D) > 0, then zi+1(D) > 0 according to 
(53). Because of the base case that z1(D) = y1(D) − s(D) > 0
ensured in Assumption  5, applying the induction step obtained 
above, we thus have that all zi(D) > 0, i = 1, . . . , n. Considering 
the structure of (28), (29), together with the initial conditions 
zi(D) > 0, and w(0, t) = r1(t −D) ≥ 0, t ≥ D according to Lemma 
3 as well as (30), (31), we obtain that zi(t) > 0, i = 1, . . . , n on 
t ∈ [D,∞]. □

Now, we are ready to show the proof of Theorem  1:

Proof. (1) The stability results of the target system in Lemmas 
1 and 2 indicate that |Z(t)|2, |R(t)|2, 

∑m
i=0 ∥w

(i)
x (·, t)∥2, |δ(x, t)|2, 

∀x ∈ [0, 1], and |δ(i)t (1, t)|
2
, i = 0, . . . ,m are exponentially 

convergent to zero.
Considering the tracking error |z1(t)| exponentially converges 

to zero, we have that |y1(t) − s(t)| exponentially converges to 
zero.

Recalling Proposition  1, applying Cauchy–Schwarz inequal-
ity, it follows (37)–(39) and exponential convergence to zero of 
zi(t)2 that yi(t)2 are bounded and the ultimate bound depends 
on 

∑i−1
j=0 s

(j)(t)2 for i = 1, . . . , n. According to (40) in Proposi-
tion  1, it is then obtained that supx∈[0,1] |u(x, t)| is bounded and 
the ultimate bound depends on the functions 

∫ 1
0 |s(n)(t + Dx)| dx. 

Recalling (7), we thus have that 
sup

t−D≤τ≤t
|x1(τ )| = |b| sup

x∈[0,1]
|u(x, t)| (54)

is also ultimately bounded by a function depending on∫ 1
0 |s(n)(t + Dx)| dx.
Considering the forward-completeness of the distal system (1), 

(2) defined in Assumption  4 and the bounded initial condition of 
the virtual input state x1(θ ), θ ∈ [−D, 0), it follows that 
P(θ ) < ∞. (55)

Plugging the predicted states p(1, t), δ(1, t) into the inverse trans-
formation (37), we have
pi(1, t) =δi(1, t) + h̄i−1(δi−1(1, t), s

(i−2)(t + D))

+ s(i−1)(t + D), i = 1, . . . , n. (56)

Recalling the continuous differentiability of h̄i in (39) and the 
exponential convergence to zero of δi(x, t) proven above, we have 
that eiP(t) = pi(1, t) is bounded for t > 0 and the ultimate bound 
depends on s(i−1)(t + D) for i = 1, . . . , n. Recalling (22) and (55), 
we know |p(x, t)|2 are bounded and the ultimate bound depends 
on s(i−1)(t + Dx)2.

Recalling (44), one obtains that |∆̄
(i)(t)|

2
 is bounded with 

the ultimate bound depending on 
∑n s(j)(t + D)2, because 
j=0

6

|δ
(i)
t (1, t)|

2
, i = 0, . . . ,m are exponentially convergent to zero and 

the h̄n in (39) is continuously differentiable. Recalling Proposition 
1, applying Cauchy–Schwarz inequality, it follows (41)–(43) and 
exponential convergence to zero of ri(t)2, i = 1, . . . ,m that xi(t)2
are bounded and the ultimate bound depends on 

∑i−1
j=0 s

(n+j)(t +

D)2 for i = 1, . . . ,m. Therefore, we conclude that Ψ (t) defined 
by (49) is bounded, and the ultimate bound depends on the given 
target trajectory s(t).

Next, we show that Ψ (t) (49) is exponentially convergent to 
zero if the target trajectory s(t) ≡ 0. Considering the exponential 
convergence to zero of |Z(t)| and h̄n(0, 0) = 0, applying Cauchy–
Schwarz inequality for (37) in Proposition  1, we know that |Y (t)|
is exponentially convergent to zero. Recalling the inverse trans-
formation of u(x, t) (40) in Proposition  1, it is obtained from 
the exponential convergence to zero of |δ(x, t)|, ∥w(·, t)∥, and 
h̄n(0, 0) = 0 that supx∈[0,1] |u(x, t)| is exponentially convergent to 
zero. It follows (54) that supt−D≤τ≤t |x1(τ )| is also exponentially 
convergent to zero. It is obtained from (56) that p(1, t) = P(t)
are exponentially convergent to zero considering h̄i(0, 0) = 0 in 
(39), and the exponential convergence to zero of |δ(x, t)| obtained 
before. Moreover, according to (22) and (55) with Assumption  4, 
the exponential convergence to zero of |p(x, t)|, ∀x ∈ [0, 1] is 
obtained. Then, recalling (44), we have that |∆̄(i)(t)|, i = 0, . . . ,m
are exponentially convergent to zero because of the exponential 
convergence to zero of |δ(i)t (1, t)| obtained above and continuous 
differentiability of h̄n. Finally, it is obtained from (41)–(43) in 
Proposition  1 that |X(t)| is exponentially convergent to zero, re-
calling the exponential convergence to zero of |R(t)|, |∆̄(i)(t)|, i =

0, . . . ,m, and τ̄i(0, 0) = 0.
The Property 1 is obtained.
(2) Over the time period t ∈ [0,D], i.e., when no control action 

reaches, the Y -system (1), (2) is only actuated by the initial input 
history signal x1(t), t ∈ [−D, 0]. Under Assumption  5, we get 
y1(t)−s(t) > 0, t ∈ [0,D],  i.e., the safety is ensured on t ∈ [0,D]. 
From Lemma  4, it holds that z1(t) = y1(t) − s(t) ≥ 0, t ∈ [D,∞).
Consequently, the safety is ensured all the time. The Property 2 
is thus proved.

The proof of Theorem  1 is complete. □

Based on safe infinite-dimensional backstepping transforma-
tions, a nominal safe delay-compensated controller is proposed 
in this section. Next, given the uncertainty of the delay, we will 
propose a safe delay-adaptive controller.

4. Safe delay-adaptive controller

4.1. Delay-adaptive control design

Following the delay-adaptive design in Wang and Diagne 
(2024), we obtain the delay identifier:

D̂(ti+1) = argmin
{
|ℓ− D̂(ti)|

2
: ℓ ∈ D0,

Gn(ti+1, µi+1)ℓ = Fn(ti+1, µi+1), n = 1, 2, . . .
}
, (57)

where the set D0 := {ℓ ∈ R : D ≤ ℓ ≤ D} uses the known 
bounds of the unknown delay given in Assumption  1, and where 
{ti ≥ 0}∞i=0, i = 0, 1, 2, . . . is a sequence of time instants for 
identification, defined as 

ti+1 = ti + T . (58)

The free positive design parameter T  denotes the dwell time 
between two adjacent triggering times. A larger T  can improve 
the robustness of the delay identifier against sensor measurement 
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errors because it allows more measured data to join the parame-
ter identification, at the cost of increased computation time. The 
time instant µi+1 is defined as 
µi+1 := min{tg : g ∈ {0, . . . , i}, tg ≥ ti+1 − ÑT }, (59)

where the positive integer Ñ ≥ 1 is a free design parameter, 
which determines the size of the data set used in the delay 
identification at ti+1, reflecting a trade-off between the identifier’s 
robustness and computation cost.

The functions Gn, Fn in (57) are given as Gn(ti+1, µi+1) =∫ ti+1
µi+1

gn(t)2 dt , Fn(ti+1, µi+1) =
∫ ti+1
µi+1

gn(t)fn(t) dt, where fn(t) =

πn
∫ t
0

∫ 1
0 cos(xπn)u(x, τ ) dx dτ , gn(t) = −

∫ 1
0 sin(xπn)u(x, t) dx. 

The detailed design process and the proof of exact delay identifi-
cation can be found in Wang and Diagne (2024). We only consider 
the scenario where x1(t − D) = 0 on t ∈ [0,D), i.e., there is no 
signal reaching Y -subsystem before t = D according to (2), in the 
adaptive control. For the case that x1(t) is not identically zero on 
t ∈ [−D, 0), a slight modification is needed in the formulation of 
the delay identifier, and some expanded analysis is required in 
the proof.

Now, using the proposed estimate D̂(ti) to replace the un-
known delay D in the nominal controller (34), we construct a 
delay-adaptive controller 
Ud(t) = U(t, D̂(ti)), t ∈ [ti, ti+1). (60)

The safety ensured by the nominal control cannot be guaranteed 
here because of the delay identification error. Following the safe-
adaptive control design in Wang and Krstic (2025), we introduce 
a QP safety filter (67) to override the potentially unsafe adaptive 
controller (60) to enforce the safety in the adaptive control.

4.2. Safe delay-adaptive control design

First, considering the unknown D, we select the design param-
eters ki, cj (45), (47) as

ki > max
D∈D0

{2, ǩi(D)}, i = 1, . . . , n − 1, kn > 1, (61)

cj > max
D∈D0

{2, čj(D)}, j = 1, . . . ,m − 1, cm > 1, (62)

where ǩi(D), čj(D) are obtained by replacing the unknown delay 
D in (46), (48) by D ∈ [D,D], where the bounds D,D are known 
according to Assumption  1. Because the condition (61), (62) is a 
subset of the one (45), (47), the positive initialization about rj(0)
and zi(D), as shown in the proofs of Lemmas  3, 4, still hold here. 
Then recalling the target system (28)–(33) and the analysis about 
the safety in the proof of Property 2 in Theorem  1, we know the 
safety objective z1(t) = y1(t) − s(t) ≥ 0 is achieved as long as 
rm(t) > 0 for all time t > 0, of which a sufficient condition is 
ṙm(t) ≥ −crm(t), (63)

where the positive parameter c is free. A safe region for the 
control action is then obtained from (63) as S(t) = {u ∈ R :

bu ≥ bU∗(t,D)} where 

U∗(t,D) =
1
b

[
(cm − c)rm(t) + τm +∆(m)(t)

]
. (64)

Considering the unknown D, by replacing the unknown delay 
by D, a conservative safe region of the adaptive control input is 
introduced as 

C(t) =

{
u ∈ R : bu ≥ max

D∈D0
bU∗(t,D)

}
. (65)

By using a QP safety filter to constrain the input signal within this 
safe region (65) before exact identification is achieved, we build 
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Fig. 2. The diagram of the safe delay-adaptive control.

the following safe adaptive controller: 

Ua(t) =

⎧⎨⎩
argminu∈R{|u − Ud|}

2

s.t. u ∈ C(t), t ∈ [0, tf )
Ud, t ∈ [tf ,∞)

(66)

whose explicit solution is 

Ua(t) =

⎧⎪⎪⎨⎪⎪⎩
{
max{Ud,maxD∈D0 U

∗(t,D)}, if b > 0;
min{Ud,minD∈D0 U

∗(t,D)}, if b < 0,
0 ≤ t ≤ tf

Ud(t). t > tf

(67)

The switching time tf  is the triggering time when the delay D
is exactly identified, determined by 
tf = min{ti : ∃t ∈ [0, ti), u(·, t) ̸= 0}, (68)

according to the proof of exact identification of delay shown 
in Section 5 of Wang and Diagne (2024). The diagram of the 
proposed safe delay-adaptive control system is depicted in Fig.  2. 
The practical implementation of this safe delay-adaptive control 
law can refer to Remarks  3, 4 in the simulation.

4.3. Result with safe delay-adaptive control

Comparing the safe nominal controller (34) with the safe 
adaptive controller (67), we define their difference as 
γ (t) = bUa(t) − bU(t). (69)

Then, implementing Ua(t) as the input into the original system 
(1)–(4), the target system becomes (28)–(32) with 
ṙm(t) = −cmrm(t) + γ (t). (70)

Remark 1. In the control input (34), the delay D, which exists 
in the predictor state Pi(t) of the distal Y -system as shown in 
(17), is associated with ∆(t), i.e., the parts related to states of the 
Y -system, while independent of the signals from the X-system. 
Thus, the function γ (t) given by (69) does not contain the signals 
from the R-system (in the form of states of the target system), 
that is, γ (t) can be regarded as an external signal to (70).

Proposition 2. For every (u(· , 0), X(0), Y (0)) ∈ Cm−1([0, 1]) ×

Rm
× Rn, there exist a unique solution (u, X, Y ) ∈ Cm−1([0,∞) ×

[0, 1])×C0([0,∞);Rm)×C0([0,∞);Rn) to the system (1)–(4) with 
control input (67).

Proof. It is obtained from (u(· , 0), X(0), Y (0)) ∈ Cm−1([0, 1]) ×

Rm
× Rn and the transformations (11)–(13), (23), (24)–(26) that 

(w(·, 0), R(0), Z(0)) ∈ Cm−1([0, 1]) × Rm
× Rn. According to 
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Remark  1 and [Proposition 1, Wang and Krstic (2025)], for the 
target system consisting of (28)–(32) and (70), we have that 
(w(·, t), R(t), Z(t)) ∈ Cm−1([0,∞) × [0, 1]) × C0([0,∞);Rm) ×

C0([0,∞);Rn) in the weak sense. Recalling the inverse transfor-
mations (37)–(43), this proposition is then obtained. □

The result of safe delay-adaptive control is presented as fol-
lows. 

Theorem 2. For the initial condition Y (0) ∈ Rn, X(0) ∈ Rm

satisfying Assumptions  4–6, the history input signal x1(t) = 0 on t ∈

[−D, 0), and a target trajectory s(t) satisfying Assumption  3, choos-
ing the design parameters k1, . . . , kn, c1, . . . , cm satisfying (61), 
(62), the closed-loop system (1)–(4) with the safe delay-adaptive 
controller (67) has the following properties

1. The delay estimation D̂(t) is bounded and reaches the true 
value in finite time tf .

2. The output y1(t) exponentially tracks the target trajectory s(t)
in the sense that |y1(t) − s(t)| exponentially converges to zero, 
and all plant states, i.e., Ψ (t) given by (49), are bounded, 
and the ultimate bound depends on the target trajectory. If 
the target trajectory s(t) ≡ 0, then Ψ (t) is exponentially 
convergent to zero.

3. The safety is ensured in the sense that y1(t) − s(t) ≥ 0 hold 
on t ≥ 0.

Proof. (1) The proof of Property 1 can be found in Sec. IV-C 
of Wang and Diagne (2024).

(2) Recalling the Lyapunov function V (t) (B.1), choose the 
analysis parameters as a0 > D, ai > 0, i = 1, . . . ,m, i.e., replacing 
the unknown D in the condition (B.6) by the known bounds 
D,D. Recalling (70) in the target system of the adaptive case, the 
inequity (B.4) now becomes 

∑m
i=1 aieD

i−1r (i)1 (t)2 ≤
∑m

i=1 biri(t)
2
+

b̄γ 2(t), where bi, b̄ depend on the upper bound D, the design 
parameters ci in (62), and the analysis parameters ai. Implement-
ing the process similar to (B.3)–(B.5) and choosing the design 
parameters ρ (B.7) as ρ > max

{
a0e
3D +

1
3b1, bm,

1
2bj

}
+ 1, j =

2, . . . ,m − 1. The time derivative of V (t) in (B.8) becomes 
V̇ (t) ≤ −ϱV (t) + b̄γ 2(t) + ρrm(t)γ (t), (71)

where ϱ =
1
θ2

min
{
1, ai

2D

}
, i = 0, . . . ,m. For the time period 

t ∈ [tf ,∞], recalling Property 1 in Theorem  2 and (67), we 
know that Ua(t) = U(t), i.e., γ (t) = 0. Thus, for (71), we 
obtain V (t) ≤ V (tf )e−ϱ(t−tf ), ∀t ≥ tf . From Remark  1 and 
transformations (11)–(13), (23)–(27), one obtains γ 2(t) ≤ ΥΩ(t)
for some positive Υ , where Ω(t) is defined in (51). Thus it follows 
(B.2), (71) that V̇ (t) ≤ −ϱV (t) + ϱ0V (t), t ∈ [0, tf ) for some 
positive ϱ0. We then get that V (t) ≤ V (0)e|ϱ0−ϱ|t , t ∈ [0, tf ). 
Considering the continuity of V (t) by recalling Proposition  2, we 
have that V (tf ) ≤ V (0)e|ϱ0−ϱ|tf . From the above relation, it further 
implies that 
V (t) ≤ V (0)e|ϱ0−ϱ|tf +ϱtf e−ϱt (72)

for t ∈ [0,∞). According to (50), we have that
Ω(t) ≤

θ2
θ1
Υ0Ω(0)e−ϱt , where Υ0 = e|ϱ0−ϱ|tf +ϱtf . Through the 

following process in the proof of Property 1 in Theorem  1, we 
obtain Property 2 in this theorem.

(3) Implementing Ua(t) as the input into the original system 
(1)–(4) and recalling the transformation (11)–(13), (24)–(26), we 
have 
ṙm(t) = −c̄rm(t) + γ (t), t ∈ [0, tf ) (73)

where γ (t) = bUa(t) − bU∗(t,D) ≥ 0 recalling (34), (63)–(67). 
Since zi(D), rj(0) are positive under the choice of the design pa-
rameters k , c  in (61), (62), we have that r (t) > 0, t ∈ [0, t )
i j m f
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Fig. 3. Vehicle platooning with leader E0 , and the followers Ei, i = 1, 2, where 
the safe distances to be maintained are doi .

from the structure of (73). Considering the continuity of rm(t) in 
Proposition  2, we obtain rm(tf ) = rm(tf −) > 0. When the adaptive 
input signal Ua(t) is equal to Ud(t) at the moment t = tf , the 
solution rm(t) is rm(t) = rm(tf )e−cm(t−tf ). Thus, the nonnegativity 
of rm(t) can be ensured during t ∈ [0,∞). It implies that all 
states rj(t), zi(t) are all nonnegative from the same process in the 
proof of Lemmas  3,4 and Property 2 in Theorem  1. The safety, 
i.e., z1(t) = y1(t) − s(t) ≥ 0, t > 0, is then proved.

The proof of this theorem is complete. □

5. Application in safe vehicle platooning

5.1. Physical model

In this section, we validate the effectiveness of the designed 
controller in the practical application of safe vehicle platooning 
by simulations. Considering the scenario described in Fig.  3: an 
electric vehicle E0 is the leader of the vehicle string and is travel-
ing at speed v0(t). The vehicle E1 is running behind the vehicle 
E0 at speed v1(t), and the third vehicle E2 is traveling behind 
the vehicle E1 at speed v2(t). The control task is to achieve a 
safe formation of these three vehicles while avoiding collisions, 
i.e., regulating the distances between adjacent vehicles to con-
verge to the safe distances, denoted by do1, do2, but not to breach 
the safe distances all the time, i.e., d1(t) = l0(t) − l1(t) ≥ do1, 
d2(t) = l1(t) − l2(t) ≥ do2 and d1(t), d2(t) converge to do1, do2
respectively, where li(t) is the measurable displacement of the 
each vehicle Ei.

In ith electric vehicle, the control input is the voltage of the 
electric motor, shown in Fig.  3, whose dynamics are described by 
nonlinear ODEs: 

Fi =
kt
r
Ii, İi = −

R
L
Ii − aIi2 +

1
L
Vi, (74)

where kt is the torque constant of the DC motor, r is the length 
of moment arm, Ii is the motor current, R is the resistance of 
the motor, L is the inductance and Vi is the input voltage. To 
reduce the modeling error between the mathematical model and 
the practical model, we introduce an unmodeled nonlinear term 
aI2i  to approximate the nonlinear elements in the drive circuit 
where the coefficient a is to be calibrated in practice by matching 
the mathematical and practical models. The output force Fi of the 
motor is transmitted to the wheel, generating the wheel drive 
force Fw i, through a set of transmissions, like a gearbox. There 
always exists a delay Di, whose length is not easy to know exactly 
in advance, in such the transmission between the motor and the 
wheel, i.e., 
F (t) = F (t − D ). (75)
w i i i
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Table 1
Physical parameters in the vehicle platooning model.
 Parameters(units) Values 
 Linear damping coefficient: f1 ( N s

m ) 5  
 Aerodynamic drag coefficient f2 ( N s2

m ) 0.25  
 Vehicle mass: Mvi (kg) 4  
 Target safe distance between E0 and E1: do1 (m) 0.5  
 Target safe distance between E1 and E2: do2 (m) 0.5  
 Transmission delay in E1: D1 (s) 2.5  
 Transmission delay in E2: D2 (s) 1.5  
 Torque constant of the DC motor: kt (N m/A) 0.8  
 Length of moment arm: r (m) 0.1  
 Resistance of the motor: R (�) 5  
 Inductance of motor drive circuit: L (H) 0.05  
 Calibrated coefficient of drive circuit nonlinearity: a 1  

Based on the wheel drive forces Fw i, according to Ames et al. 
(2014), Bekiaris-Liberis (2024), the dynamic of ith vehicle is mod-
eled as the following nonlinear ODE: 

Mvi
dvi
dt

= Fwi − f1vi − f2vi2, (76)

where Mvi is the vehicle mass, and f2vi2 describes the nonlinear 
damping force. The physical parameters used in the simulation 
are given in Table  1, where we choose delays that are greater 
than those generally encountered in practice to evaluate the 
controller under much challenging circumstances and showcase 
its performance.

5.2. Matching the physical model and the plant (1)–(4)

For ith vehicle, setting yi1(t) = −li(t), yi2(t) = −vi(t), xi1(t) =

Fi (i.e., xi1(t − Di) = Fwi), and Ui =
kt
rLVi, the physical model 

(74)–(76) is rewritten as
ẏi1(t) = yi2(t), (77)

ẏi2(t) =
−f1yi2(t) + f2yi2(t)2

Mvi
−

xi1(t − Di)
Mvi

, (78)

ẋi1(t) = −
R
L
xi1 − a

r
kt

x2i1 + Ui(t), (79)

which is covered by the considered plant (with the states Yi(t) =

[yi1(t), yi2(t)]T , Xi(t) = xi1(t), where i denotes ith considered 
plants). Considering the physical safety constraint li−1(t)− li(t)−
doi ≥ 0, we set the target trajectory of the ith vehicle as si(t) =

−li−1(t)+doi. We set that the initial position of the leader vehicle 
E0 is l0(0) = 10, with the speed given by v1(t) = 4 + sin(t) and 
thus the target trajectory for E1 is s1(t) = −4t +cos(t)−11+do1. 
The target trajectory for vehicle E2 is s2(t) = y11(t) + do2. The 
unknown delays of vehicles E1, E2 are given in Table  1, with 
known bounds as D = 0.2, D = 4. Assuming the initial values 
of vehicles’ speed and distance between them as v1(0) = 1, 
v2(0) = 2, d1(0) = 5, d2(0) = 5, then the initial conditions of Yi(t)
are given as y11(0) = −5, y12(0) = −1, y21(0) = 0, y22(0) = −2. 
Besides, we take x11(0) = 2, x21(0) = 1 with x11(t) ≡ 0, x21(t) ≡ 0
during the period t ∈ [−D, 0). They satisfy Assumptions  4–6 
regarding the initial conditions.

5.3. Controller

According to (34), the nominal controller for this three-order 
system is 

Ui(t) = −ci1xi1 − ϕi1 +
ci1
b
∆i(t) +

1
b
∆

(1)
i (t), (80)

where ∆i(t) = −ki1ki2Pi1 − (ki1 + ki2)(Pi2 +ψi1(Pi1)) + ki1ki2si(t +

D ) + (k + k )s (1)(t + D ) + s (2)(t + D ) − ψ (1)(P ) − ψ (P ). 
i i1 i2 i i i i i1 i1 i2 i2

9

Remark 2. The target trajectory si(t + Di) used in (80) depends 
on the predicted state of the preceding vehicle Ei−1, i.e., Pi−1. 
In our simulation, recalling (17), Pi−1(t) is computed on the ego 
vehicle Ei−1 by the current state Yi−1(t), the historical predictions 
Pi−1(tP ), tP ∈ [t − Di−1, t), and the virtual input xi−1 1(t), and 
then transmitted to the following vehicle Ei+1. Upon receiving the 
prediction information from vehicle Ei−1, vehicle Ei can simply 
calculate that si(t + Di) = Pi−1(t − Di−1 + Di) + doi. We only add 
a restriction D1 ≥ D2 in this application when implementing the 
obtained theoretical results, considering that the controller of the 
vehicle E2 requires the predicted value of the displacement y11 of 
the vehicle E1 in a time horizon of D2, while the predictor time 
span in E1 controller is D1.

Considering the unknown delay, according to (67), the safe 
delay-adaptive controller is derived from the nominal safe delay-
compensated controller (80) based on the control design in Sec-
tion 4. According to (45)–(48), (61), (62), the design parameters 
for the nominal or adaptive controller are chosen as k11 = k21 =

3, k12 = k22 = 2, c11 = c12 = 2. The initial value of the estimator 
(57) is defined as D̂i(t0) = 0.2. The delay-adaptive controller 
Ud(t) (60) is constructed by replacing the unknown delay with 
the estimate D̂(ti) in (80), and the safety filter is built by choosing 
c̄ = 2 in (64), where it is required to seek the maximum or 
minimum of the signal U∗(t,D) with respect to the delay variable 
D. The implementation of seeking the maximum or minimum 
of U∗(t,D) and that of the delay estimator are described in the 
following two remarks. 

Remark 3 (Seeking the maximum or minimum of U∗(t,D)). We 
divide the known range [D,D] by the interval of dD, i.e., each 
possible delay D(i) = D + i dD, i = 0, . . . ,ND, where the number 
ND is a freely chosen positive integer (the larger ND is accompa-
nied with higher accuracy but larger computation source). The 
predictor values under all possible delays D(i), i = 0, 1, . . . ,ND
should be computed for each moment before tf . We set a ND-
row data matrix to record the predictor values under all D(i). 
Taking the discretization step d, there are ⌈D(i)

d ⌉ predictor values 
in the row corresponding to the delay D(i), in the process of 
computing the prediction for D(i) (where ⌈x⌉ is defined as the 
ceiling function: taking the least integer that is greater than or 
equal to x). By taking all the possible predictor values in (67) and 
selecting the maximum or minimum value as a control input, it 
is ensured that the current control input is in a subset of the safe 
control region of the nominal safe controller. After tf , i.e. the time 
when the exact delay identification is achieved, only the values 
in the row corresponding to the certain delay D(i) that is closest 
to the output of the delay estimator are reserved, to continue 
calculating the predictor values and the control signal along this 
delay. Then there is no need to calculate the predicted values of 
other rows anymore after tf , and the control input stays in the 
original safe control region of the nominal control.

Besides, when seeking the maximum or minimum of U∗(t,D)
for vehicle E2, the predicted displacements of vehicle E1 under 
all possible delays are required to join in this seeking process. 
Once the identification time tf  is reached, only the predictor value 
P1(t−D̂1(tf )+D̂2(tf )) based on D̂1(tf ) is used in the design of Ua(t)
(67). 

Remark 4 (Implementation of the delay estimator). The delay es-
timate D̂(t) is constructed using the finite difference method to 
approximate the integration with respect to the space variable, 
which may cause some errors between the identified value and 
true value. The smaller space step dx and larger design parameter 
T  can reduce this approximation error, but they also increase 
the computational burden and time. If the difference between 
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Fig. 4. Results for the distance between vehicle E0 and E1 , i.e., d1(t) = l0(t) +

y11(t).

Fig. 5. Results for the distance between vehicle E1 and E2 , i.e., d2(t) = y21(t) −

y11(t).

Fig. 6. Results for the velocities of followers Ei , i.e., vi = −yi2 , i = 1, 2.

the estimates from the identifier at two adjacent updating times 
is smaller than 2% of the true value, we consider that the ap-
proximation error causes this difference, and thus, we keep the 
estimated value the same as it was at the previous updating time. 
Additionally, we set an upper limit of n = 3 for n in (57) to save 
computation time for estimation. Other design parameters in the 
estimator (57)–(59) are selected as Ñ = 5, T = 3.

5.4. Simulation results

The simulation, including the implementation of the predictor 
(17) and identifier (57), is performed using the finite difference 
method with a time step dt = 0.001 and a space step dx =

0.02. As mentioned in Remark  3, the interval of D(i) is taken as 
d = 0.01. In addition to the nominal safe delay-compensated 
D

10
Fig. 7. Results for the output force of the actuator Fi = xi1(t) and the input 
voltage Vi(t) =

rLUi(t)
kt

.

controller and the safe delay-adaptive controller, as a comparison, 
we also apply a safe controller without delay compensation, 
i.e., replacing the predictor states in (80) with the states Y (t).

The simulation results are shown in Figs.  4–7, where the blue 
line represents the results under nominal safe delay-compensated 
control, the green dot-dashed line denotes the results under 
safe delay-adaptive control, and the red dotted line shows the 
results under safe control without delay compensation. The re-
sults regarding the output states yi1(t), i = 1, 2 of the ith plant 
considered in this paper, i.e., the distances di = yi1 + li−1
between vehicles Ei and Ei−1, i = 1, 2 in practice, are illustrated 
in Figs.  4, 5. We can see that the vehicle distances are conver-
gent to the pre-set safe values do1, do2 respectively, and never 
exceed the safe boundary in the entire control process under the 
nominal and adaptive controllers. For the safe controller with-
out delay compensation, the distances between vehicles undergo 
large oscillations, breaching the safety constraint and ultimately 
diverging due to the effects of the delay and nonlinearity. Com-
pared with the nominal control, even though the results under 
the safe delay-adaptive controller exhibit greater conservatism 
with respect to safety in the process of delay identification, they 
have similar behavior ultimately, after the effective estimate of 
the unknown is obtained. Due to the uncertainty of the predicted 
information of vehicle E1, which is required in the controller of 
E2, the adaptive results of E2 exhibit greater conservatism with 
respect to safety than E1 in the process of delay identification, 
as shown in Figs.  4, 5. We also know from Figs.  6(a), 6(b) that 
the velocities of follower vehicles E1, E2 converge to the target 
speed (i.e., v(t) = 4+sin t) of the leader vehicle E0 under adaptive 
and nominal control, while they diverge in the case without delay 
compensation. In Figs.  4–6, the results under the three controllers 
are identical before the delay time t = Di because the vehicle 
behaviors only depend on the initial data on t ∈ [0,D) and there 
is no control action. The responses of the actuator output Fi =

xi1(t), i = 1, 2, are shown in Figs.  7(a), 7(b), where they converge 
to constant values under adaptive and nominal control. The input 
voltages (i.e., control signals) of the two vehicles are depicted in 
Figs.  7(c), 7(d) respectively. Additionally, Fig.  8 presents the delay 
estimates from the delay identifier, where the blue line shows 
the estimate D̂1(t) of the delay D1 and the green dot-dashed 
line denotes the delay estimate D̂2(t). Starting from the initial 
delay estimate D̂ (t ) = D = 0.2, the successful identification 
i 0
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Fig. 8. Estimates of the unknown delays Di, i = 1, 2 under the initial estimates 
D̂i(t0) = 0.2.

of the unknown delay Di is achieved at the first triggering time 
tf = 3. Tiny differences exist between the delay estimates and 
the true values due to the errors in approximating integration as 
summation in the use of the finite difference method.

6. Conclusion and future work

In this paper, we design a safe delay-adaptive controller for 
a strict-feedback nonlinear system under a delayed nonlinear 
actuator, where the arbitrarily long delay D between two non-
linear subsystems is unknown, based on the safe predictor-based 
backstepping transformation and a QP safety filter with BaLSI. 
Finally, we achieve exponential regulation of system states with a 
safety guarantee. The effectiveness of our design is verified in the 
application of safe vehicle platooning, ensuring vehicle string sta-
bility with a small gap and avoiding collisions at a relatively high 
speed in the presence of unknown delays. Considering external 
disturbances, and measurement or prediction errors, which often 
occur in practice, improving the robustness of the adaptive safe 
controller will be dealt with in our future work. We will also try to 
apply neural operators to improve the proposed controller’s real-
time efficacy in implementation by approximating the nonlinear 
ODEs as an open-loop flow map in the predictor (Bhan, Shi, & 
Krstic, 2024; Krstic, 2023).

Appendix A. Proof of Proposition  1

A.1. Inverse transformation (37)–(39)

Considering y1(t) = z1(t) + s(t) given by (11) at i = 1, we 
have ψ1(y1(t)) = ψ1(z1(t) + s(t)) := ψ̄1(z1(t), s(t)) which is 
continuously differentiable and satisfies ψ̄1(0, 0) = ψ1(0) = 0
according to Assumption  2. Considering (1) in the original system 
and (28) in the target system, recalling (11), for i = 1, we have
y2(t) = ẏ1(t) − ψ1 = ż1(t) + s(1)(t) − ψ̄1(z1(t), s(t))

= z2(t) + h̄1(z1(t), s(t)) + s(1)(t), (A.1)

where h̄1(z1(t), s(t)) = −k1z1(t) − ψ̄1(z1(t), s(t)). From (A.1) and 
y1(t) = z1(t) + s(t), we have ψ2(y2(t)) := ψ̄2(z2(t), s

(1)(t)) by 
replacing y1, y2 with z1, z2 and s(1)(t). It is obvious that h̄1, ψ̄2 is 
continuously differentiable and h̄1(0, 0) = 0, ψ̄2(0, 0) = 0 from 
(A.1), Assumption  2, and ψ̄1(0, 0) = 0 shown above. Similarly, 
from (1), (28) at i = 2 and (A.1), one gets
11
y3(t) =ẏ2(t) − ψ2 = z3(t) − k2z2(t) + s(2)(t) − ψ̄2

+
∂ h̄1

∂z1

(
−k1z1 + z2

)
+
∂ h̄1

∂s
s(1)(t)

=z3(t) + h̄2(z2(t), s
(1)(t)) + s(2)(t), (A.2)

where h̄2 = −k2z2(t) − ψ̄2 +
∂ h̄1
∂z1

(
−k1z1 + z2

)
+

∂ h̄1
∂s s

(1)(t).
We now prove the induction step: if all the inverse transfor-

mations from zj(t) to yj(t), j = 2, . . . , i for i ≤ n − 1 are given as 

yj(t) = zj(t) + h̄j−1(z j−1, s
(j−2)) + s(j−1)(t), (A.3)

where h̄j = −kjzj(t) − ψ̄j +
∑j−1

k=1

( ∂ h̄j−1
∂zk

(
−kkzk + zk+1(t)

)
+

∂ h̄j−1
∂s(k−1) s(k)(t)

)
, ψ̄j(z j(t), s

(j−1)(t)) = ψj(yj(t)), j = 1, . . . , i − 1 and 
for all j, ψ̄j, h̄j are continuously differentiable function satisfying 
h̄j(0, 0) = 0, ψ̄j(0, 0) = 0, thus we have yi+1(t) = zi+1(t) + h̄i +

s(i)(t) with continuously differentiable function h̄i, ψ̄i satisfying 
h̄i(0, 0) = 0, ψ̄i(0, 0) = 0 as well. The proof of the induction step 
is given as follows. Substituting the induction hypothesis (A.3) at 
j = i into the original system (1) at i + 1, recalling (28) in the 
target system, one obtains yi+1(t) = ẏi(t) − ψi(yi) = zi+1(t) +

h̄i(z i(t), s
(i−1)(t)) + s(i)(t) where h̄i(z i(t), s

(i−1)(t)) = −kizi − ψ̄i +∑i−1
k=1

( ∂ h̄i−1
∂zk

(
−kkzk + zk+1

)
+

∂ h̄i−1
∂s(k−1) s(k)(t)

)
, and ψ̄i(z i(t), s

(i−1)(t)) =

ψi(yi(t)) by replacing yi(t) in ψ with z i(t), s(i−1)(t) using the 
relations from zj to yj, j = 2, . . . , i, given by (A.3). The function 
ψ̄ is continuously differentiable because all h̄j, j = 1, . . . , i − 1
are continuously differentiable, and satisfy ψ̄i(0, 0) = ψi(0) = 0
because of (A.3), h̄j(0, 0) = 0, j = 1, . . . , i− 1, and Assumption  2. 
It implies that h̄i is continuously differentiable and h̄i(0, 0) = 0. 
The proof of the induction step is complete.

Starting from the base cases y1(t) = z1(t) + s(t), (A.1), (A.2), 
and applying the induction step proved above, the inverse trans-
formation (37)–(39) is verified.

A.2. Inverse transformation (40)

Recalling (2), (7), we have 
ẏn(t + Dx) = ψn(yn(t + Dx)) + u(x, t). (A.4)

Taking the time derivative of (37) at i = n, replacing the current 
states yn, zi by the predictor states pn, δi, applying ṗn(x, t) =

ψn(pn(x, t)) + u(x, t) obtained from (A.4), we then have

ψn(pn(x, t)) + u(x, t) =
∂δn(x, t)
∂t

+ s(n)(t + Dx)

+

n−1∑
k=1

[∂ h̄n−1(δn−1(x, t), s
(n−2)(t))

∂δk(x, t)

(
−kkδk(x, t)

+ δk+1(x, t)
)
+
∂ h̄n−1

∂s(k−1) s
(k)(t + Dx)

]
. (A.5)

Recalling ψn(pn(x, t)) = ψ̄n(δn(x, t), s
(n−1)(t + Dx)), plugging 

∂δn(x,t)
∂t = −knδn(x, t) + w(x, t) obtained from (29) into (A.5), one 

gets u(x, t) = w(x, t) +

(
−knδn(x, t) − ψ̄n +

∑n−1
k=1[

∂ h̄n−1
∂δk(x,t)

(
−kkδk(x, t) + δk+1(x, t)

)
+

∂ h̄n−1
∂s(k−1) s(k)(t + Dx)

])
+ s(n)(t +

Dx). Recalling the definition of h̄n in (39), the inverse of the 
transformation (23) is obtained as (40).

A.3. Inverse transformation (41)–(43)

According to (40), (10), (31), we have x1 =
1
b r1 +

1
b h̄n(δ(1, t),

s(n−1)(t + D)) +
1 s(n)(t + D), i.e., (41) at j = 1 with (44). Through 
b
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the recursive process similar to Appendix  A.1, recalling (3), (4), 
(32) and (33), as well as Assumption  2, the inverse of trans-
formation (24)–(26) is obtained as (41)–(43), with continuously 
differentiable ϕ̄j(r j(t),∆(i−1)(t)) = ϕj(xj) satisfying ϕ̄j(0, 0) = 0.

Appendix B. The proof of Lemma  1

We construct the following Lyapunov function for the target 
system (28)–(33),

V (t) =
1
2

n∑
i=1

zi(t)2 +
ρ

2

m∑
i=1

ri(t)2 +
1
2

m∑
i=0

∫ 1

0
aiexw(i)

x (x, t)2 dx,

(B.1)

where ρ, a1, . . . , am are positive analysis parameters that will be 
determined later. According to (51), we have 

θ1Ω(t) ≤ V (t) ≤ θ2Ω(t) (B.2)

for some positive constants θ1, θ2. Taking the time derivative of 
V (t) in (B.1), one obtains

V̇ (t) = −

n∑
i=1

kizi(t)2 +

n−1∑
i=1

zi(t)zi+1(t) + w(0, t)zn(t)

− ρ

m∑
i=1

ciri(t)2 + ρ

m−1∑
i=1

ri(t)ri+1(t) +
a0e
2D
w(1, t)2

−

m∑
i=0

ai
2D
w(i)

x (0, t)2 +

m∑
i=1

aie
2D
w(i)

x (1, t)2

−

m∑
i=0

ai
2D

∫ 1

0
exw(i)

x (x, t)2 dx, (B.3)

where integration by parts has been used. Recalling (31)–(33), 
we conclude that there exist positive constants b1, . . . , bm, deter-
mined by delay time D, design parameters c1, . . . , cm, and analysis 
parameters a1, . . . , am, such that 
m∑
i=1

aie
D
w(i)

x (1, t)2 =

m∑
i=1

aieDi−1r (i)1 (t)2 ≤

m∑
i=1

bir2i . (B.4)

Thus applying Young’s inequality and inserting (B.4) into (B.3) 
yield that

V̇ (t) ≤ −(k1 −
1
2
)z1(t)2 −

n∑
i=2

(ki − 1)zi(t)2

−

[
ρ(c1 −

1
2
) −

a0e
2D

−
1
2
b1

]
r1(t)2

−

m−1∑
i=2

[ρ(ci − 1) −
1
2
bi]ri(t)2

−

[
ρ(cm −

1
2
) −

1
2
bm

]
rm(t)2 − (

a0
2D

−
1
2
)w(0, t)2

−

m∑
i=0

ai
2D

∫ 1

0
exw(i)

x (x, t)2 dx −

m∑
i=1

ai
2D
w(i)

x (0, t)2. (B.5)

Under the conditions of the design parameters
c1, . . . , cm, k1, . . . , kn in (45)–(48), and choosing the analysis pa-
rameters a0, . . . , am, ρ as

a0 ≥ D, ai > 0, i = 1, . . . ,m (B.6)

ρ > max
{
a0e
3D

+
1
3
b1, bm,

1
2
bj

}
+ 1, j = 2, . . . ,m − 1 (B.7)
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we get

V̇ (t) ≤ −

n∑
i=1

zi(t)2 −

m∑
i=1

ri(t)2

−

m∑
i=0

ai
2D

∫ 1

0
exw(i)

x (x, t)2 dx ≤ −ϱV (t), (B.8)

where ϱ =
1
θ2

min
{
1, ai

2D

}
> 0, i = 0, . . . ,m. Recalling (B.2), 

we thus have (50), where ΥΩ =
θ2
θ1

 and σΩ = ϱ. The lemma is 
obtained.

Appendix C. The proof of Lemma  2

Applying Cauchy–Schwarz inequality for (35), it is obtained 
that |δ(x, t)|2, ∀x ∈ [0, 1], are exponentially convergent to zero 
from the exponential convergence to zero of |Z(t)|2, ∥w(·, t)∥2

in Lemma  1. Moreover, taking i order time derivatives of (35) at 
x = 1, one obtains

δ
(i)
t (1, t) = eDAZ (i)(t) + D

∫ 1

0
eDA(1−y)Bw(i)

t (y, t) dy

= eDA
(
AiZ(t) +

i−1∑
j=0

Ai−1−jBw(j)
t (0, t)

)
+

1
D(i−1)

×

[ i−1∑
j=0

(DA)j
(
Bw(i−1−j)

x (1, t) − eDABw(i−1−j)
x (0, t)

)
+

∫ 1

0
(DA)ieDA(1−y)Bw(y, t) dy

]
, (C.1)

where integration by parts and (30) have been used. According 
to (30)–(33), applying Cauchy–Schwarz inequality, we also have 
w

(i)
x (1, t)2 + w

(i)
x (0, t)2 ≤ Υw

(
∥w

(i+1)
x (·, t)∥2

+ r i+1(t)
2
)
, i =

1, . . . ,m − 1 for some positive Υw . Then applying (C.1), and re-
calling the exponential convergence to zero of 

∑m
i=0 ∥w

(i)
x (·, t)∥2, 

|Z(t)|2, |R(t)|2 in Lemma  1, and that of |δ(x, t)|2,∀x ∈ [0, 1]
obtained above, we have that |δ(i)t (1, t)|

2
, i = 0, . . . ,m are ex-

ponentially convergent to zero. The lemma is then obtained.
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